108 research outputs found

    On the effectiveness of rotational friction hinge damper to control responses of multi-span simply supported bridge to non-uniform ground motions

    Get PDF
    Base isolation techniques have been extensively used to improve the seismic performance of the bridge structures. The decoupling of the bridge decks from the piers and abutments using rubber isolator could result in significant reduction in seismic forces transmitted to the bridge substructures. However, the isolation devices could also increase the deck displacement and thus enhance the possibility of pounding and unseating damage of bridge decks. Moreover, previous investigations have shown that pounding and unseating damages on isolated bridges exacerbate due to the spatial variation in earthquake ground motions. Recent earthquakes revealed that isolation bearing could also be damaged due to the excessive movements of decks during large earthquake events. This study proposes the use of rotational friction hinge dampers to mitigate the damages that could be induced by large displacement of bridge decks, particularly focusing on pounding and unseating damages and bearing damages. The device is capable of providing large hysteretic damping and the cost of installing the devices is relatively economical. This article presents numerical investigations on the effectiveness of these devices on a typical Nepalese simply supported bridge subjected to spatially varying ground motions. The results indicate that rotational friction hinge dampers are very effective in mitigating the relative displacement and pounding force, as well as controlling the bearing deformation and pier drift. It is also revealed that the effectiveness of the device is not significantly affected by small changes in the slip forces; thus, small variations in the optimum slip forces during the lifetime of the bridge do not warrant any adjustment or replacement of the device

    Seismic response analysis of multiple-frame bridges with unseating restrainers considering ground motion spatial variation and SSI

    Get PDF
    Unseating damages of bridge decks have been observed in many previous major earthquakes due to large relative displacement exceeding the available seat length. Steel cable restrainers are often used to limit such relative displacements. Present restrainer design methods are based on the relative displacements caused by the different dynamic characteristics of adjacent bridge structures. However, the relative displacements in bridge structures are not only caused by different dynamic characteristics of adjacent bridge segments. Recent studies indicated that differential ground motions at supports of bridge piers and Soil Structure Interaction (SSI) could have a significant influence on the relative displacement of adjacent bridge components. Thus the present design methods could significantly underestimate the relative displacement responses of the adjacent bridge components and the stiffness of the restrainers required to limit these displacements. None of the previous investigations considered the effects of spatially varying ground motions in evaluating the adequacy of the restrainers design methods. Moreover, the code recommendation of adjusting the fundamental frequencies of adjacent bridge structures close to each other to mitigate relative displacement induced damages is developed based on the uniform ground motion assumption. Investigations on its effectiveness to mitigate the relative displacement induced damages on the bridge structures subjected to spatially varying ground motion and SSI are made. This paper discusses the effects of spatially varying ground motions and SSI on the responses of the multiple-frame bridges with unseating restrainers through inelastic bridge response analysis

    Prototype Impact Tests on Ultimate Impact Resistance of PC Rock-Shed

    No full text

    Model Experiment and Numerical Modelling of Dynamic Soil-Structure Interaction

    No full text
    • …
    corecore