79 research outputs found

    SOA formation from the atmospheric oxidation of 2-methyl-3-buten-2-ol and its implications for PM<sub>2.5</sub>

    Get PDF
    The formation of secondary organic aerosol (SOA) generated by irradiating 2-methyl-3-buten-2-ol (MBO) in the presence and/or absence of NO<sub>x</sub>, H<sub>2</sub>O<sub>2</sub>, and/or SO<sub>2</sub> was examined. Experiments were conducted in smog chambers operated in either dynamic or static mode. A filter/denuder sampling system was used for simultaneously collecting gas- and particle-phase products. The structural characterization of gas and particulate products was investigated using BSTFA, BSTFA + PFBHA, and DNPH derivatization techniques followed by GC-MS and liquid chromatography analysis. This analysis showed the occurrence of more than 68 oxygenated organic compounds in the gas and particle phases, 28 of which were tentatively identified. The major components observed include 2,3-dihydroxyisopentanol (DHIP), 2-hydroxy-2-oxoisopentanol, 2,3-dihydroxy-3-methylbutanal, 2,3-dihydroxy-2-methylsuccinic acid, 2-hydroxy-2-methylpropanedioic acid, acetone, glyoxal, methylglyoxal, glycolaldehyde, and formaldehyde. Most of these oxygenated compounds were detected for the first time in this study. <br><br> While measurements of the gas-phase photooxidation products have been made, the focus of this work has been an examination of the particle phase. SOA from some experiments was analyzed for the organic mass to organic carbon ratio (OM/OC), the effective enthalpy of vaporization (&Delta;H<sub>vap</sub><sup>eff</sup>), and the aerosol yield. Additionally, aerosol size, volume, and number concentrations were measured by a Scanning Mobility Particle Sizer coupled to a Condensation Particle Counter system. The OM/OC ratio was 2.1 in the MBO/H<sub>2</sub>O<sub>2</sub> system. The ΔH<sub>vap</sub><sup>eff</sup> was 41 kJ mol<sup>−1</sup>, a value similar to that of isoprene SOA. The laboratory SOA yield measured in this study was 0.7% in MBO/H<sub>2</sub>O<sub>2</sub> for an aerosol mass of 33 μg m<sup>−3</sup>. Secondary organic aerosol was found to be negligible under conditions with oxides of nitrogen (NO<sub>x</sub>) present. Time profiles and proposed reaction schemes are provided for selected compounds. <br><br> The contribution of SOA products from MBO oxidation to ambient PM<sub>2.5</sub> was investigated by analyzing a series of ambient PM<sub>2.5</sub> samples collected in several places around the United States. In addition to the occurrence of several organic compounds in both field and laboratory samples, DHIP was found to originate only from the oxidation of MBO, and therefore this compound could potentially serve as a tracer for MBO SOA. Initial attempts have been made to quantify the concentrations of DHIP and other compounds based on surrogate compound calibrations. The average concentrations of DHIP in ambient PM<sub>2.5</sub> samples from Duke Forest in North Carolina ranged from zero during cold seasons to approximately 1 ng m<sup>−3</sup> during warm seasons. This appears to be the first time that DHIP has been detected in ambient PM<sub>2.5</sub> samples. The occurrence of several other compounds in both laboratory and field samples suggests that SOA originating from MBO can contribute under selected ambient conditions to the ambient aerosol mainly in areas where MBO emissions are high

    The formation of secondary organic aerosol from the isoprene + OH reaction in the absence of NO<sub>x</sub>

    Get PDF
    The reaction of isoprene (C<sub>5</sub>H<sub>8</sub>) with hydroxyl radicals has been studied in the absence of nitrogen oxides (NO<sub>x</sub>) to determine physical and chemical characteristics of the secondary organic aerosol formed. Experiments were conducted using a smog chamber operated in a steady-state mode permitting measurements of moderately low aerosol levels. GC-MS analysis was conducted to measure methyl butenediols in the gas phase and polyols in the aerosol phase. Analyses were made to obtain several bulk aerosol parameters from the reaction including values for the organic mass to organic carbon ratio, the effective enthalpy of vaporization (ΔH<sub>vap</sub><sup>eff</sup>), organic peroxide fraction, and the aerosol yield. <br><br> The gas phase analysis showed the presence of methacrolein, methyl vinyl ketone, and four isomers of the methyl butenediols. These gas-phase compounds may serve as precursors for one or more of several compounds detected in the aerosol phase including 2-methylglyceric acid, three 2-methyl alkenetriols, and two 2-methyl tetrols. In contrast to most previous studies, the 2-methyl tetrols (and the 2-methyl alkenetriols) were found to form in the absence of acidic sulfate aerosol. However, reaction conditions did not favor the production of HO<sub>2</sub> radicals, thus allowing RO<sub>2</sub>+RO<sub>2</sub> reactions to proceed more readily than if higher HO<sub>2</sub> levels had been generated. <br><br> SOA/SOC (i.e. OM/OC) was found to average 1.9 in the absence of NO<sub>x</sub>. The effective enthalpy of vaporization was measured as 38.6 kJ mol<sup>&minus;1</sup>, consistent with values used previously in modeling studies. The yields in this work (using an independent technique than used previously) are lower than those of Kroll et al. (2006) for similar aerosol masses. SOC yields reported in this work range from 0.5–1.4% for carbon masses between 17 and 49 μgC m<sup>&minus;3</sup>

    Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    Get PDF
    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS)

    Yields and molecular composition of gas-phase and secondary organic aerosol from the photooxidation of the volatile consumer product benzyl alcohol: formation of highly oxygenated and hydroxy nitro-aromatic compounds

    Get PDF
    Recently, volatile chemical products (VCPs) have been increasingly recognized as important precursors for secondary organic aerosol (SOA) and ozone in urban areas. However, their atmospheric chemistry, physical transformation, and impact on climate, environment, and human health remain poorly understood. Here, the yields and chemical composition at the molecular level of gas- and particle-phase products originating from the photooxidation of one of these VCPs, benzyl alcohol (BnOH), are reported. The SOA was generated in the presence of seed aerosol from nebulized ammonium sulfate solution in a 14.5 m3 smog chamber operated in flow mode. More than 50 organic compounds containing nitrogen and/or up to seven oxygen atoms were identified by mass spectrometry. While a detailed non-targeted analysis has been made, our primary focus has been to examine highly oxygenated and nitro-aromatic compounds. The major components include ring-opening products with a high oxygen-to-carbon ratio (e.g., malic acid, tartaric acids, arabic acid, trihydroxy-oxo-pentanoic acids, and pentaric acid) and ring-retaining products (e.g., benzaldehyde, benzoic acid, catechol, 3-nitrobenzyl alcohol, 4-nitrocatechol, 2-hydroxy-5-nitrobenzyl alcohol, 2-nitrophloroglucinol, 3,4-dihydroxy-5-nitrobenzyl alcohol). The presence of some of these products in the gas and particle phases simultaneously provides evidence of their gas–particle partitioning. These oxygenated oxidation products made dominant contributions to the SOA particle composition in both low- and high-NOx systems. Yields, organic mass to organic carbon ratio, and proposed reaction schemes for selected compounds are provided. The aerosol yield was 5.2 % for BnOH/H2O2 at an SOA concentration of 52.9 µg m−3 and ranged between 1.7 % and 8.1 % for BnOH / NOx at an SOA concentration of 40.0–119.5 µg m−3.</p

    Chemical composition of isoprene SOA under acidic and non-acidic conditions: effect of relative humidity

    Get PDF
    The effect of acidity and relative humidity on bulk isoprene aerosol parameters has been investigated in several studies; however, few measurements have been conducted on individual aerosol compounds. The focus of this study has been the examination of the effect of acidity and relative humidity on secondary organic aerosol (SOA) chemical composition from isoprene photooxidation in the presence of nitrogen oxide (NOx). A detailed characterization of SOA at the molecular level was also investigated. Experiments were conducted in a 14.5&thinsp;m3 smog chamber operated in flow mode. Based on a detailed analysis of mass spectra obtained from gas chromatography–mass spectrometry of silylated derivatives in electron impact and chemical ionization modes, ultra-high performance liquid chromatography/electrospray ionization/time-of-flight high-resolution mass spectrometry, and collision-induced dissociation in the negative ionization modes, we characterized not only typical isoprene products but also new oxygenated compounds. A series of nitroxy-organosulfates (NOSs) were tentatively identified on the basis of high-resolution mass spectra. Under acidic conditions, the major identified compounds include 2-methyltetrols (2MT), 2-methylglyceric acid (2mGA), and 2MT-OS. Other products identified include epoxydiols, mono- and dicarboxylic acids, other organic sulfates, and nitroxy- and nitrosoxy-OS. The contribution of SOA products from isoprene oxidation to PM2.5 was investigated by analyzing ambient aerosol collected at rural sites in Poland. Methyltetrols, 2mGA, and several organosulfates and nitroxy-OS were detected in both the field and laboratory samples. The influence of relative humidity on SOA formation was modest in non-acidic-seed experiments and stronger under acidic seed aerosol. Total secondary organic carbon decreased with increasing relative humidity under both acidic and non-acidic conditions. While the yields of some of the specific organic compounds decreased with increasing relative humidity, others varied in an indeterminate manner from changes in the relative humidity.</p

    Gas and aerosol carbon in California: comparison of measurements and model predictions in Pasadena and Bakersfield

    Get PDF
    Co-located measurements of fine particulate matter (PM2.5) organic carbon (OC), elemental carbon, radiocarbon (14C), speciated volatile organic compounds (VOCs), and OH radicals during the CalNex field campaign provide a unique opportunity to evaluate the Community Multiscale Air Quality (CMAQ) model's representation of organic species from VOCs to particles. Episode average daily 23 h average 14C analysis indicates PM2.5 carbon at Pasadena and Bakersfield during the CalNex field campaign was evenly split between contemporary and fossil origins. CMAQ predicts a higher contemporary carbon fraction than indicated by the 14C analysis at both locations. The model underestimates measured PM2.5 organic carbon at both sites with very little (7% in Pasadena) of the modeled mass represented by secondary production, which contrasts with the ambient-based SOC / OC fraction of 63% at Pasadena. Measurements and predictions of gas-phase anthropogenic species, such as toluene and xylenes, are generally within a factor of 2, but the corresponding SOC tracer (2,3-dihydroxy-4-oxo-pentanoic acid) is systematically underpredicted by more than a factor of 2. Monoterpene VOCs and SOCs are underestimated at both sites. Isoprene is underestimated at Pasadena and overpredicted at Bakersfield and isoprene SOC mass is underestimated at both sites. Systematic model underestimates in SOC mass coupled with reasonable skill (typically within a factor of 2) in predicting hydroxyl radical and VOC gas-phase precursors suggest error(s) in the parameterization of semivolatile gases to form SOC. Yield values (&alpha;) applied to semivolatile partitioning species were increased by a factor of 4 in CMAQ for a sensitivity simulation, taking into account recent findings of underestimated yields in chamber experiments due to gas wall losses. This sensitivity resulted in improved model performance for PM2.5 organic carbon at both field study locations and at routine monitor network sites in California. Modeled percent secondary contribution (22% at Pasadena) becomes closer to ambient-based estimates but still contains a higher primary fraction than observed

    Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere

    Get PDF
    2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C5H12O6S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM2.5) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM2.5 collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

    Full text link
    corecore