11 research outputs found

    Plasmon–Exciton Interactions Probed Using Spatial Coentrapment of Nanoparticles by Topological Singularities

    No full text
    We study plasmon–exciton interaction by using topological singularities to spatially confine, selectively deliver, cotrap and optically probe colloidal semiconductor and plasmonic nanoparticles. The interaction is monitored in a single quantum system in the bulk of a liquid crystal medium where nanoparticles are manipulated and nanoconfined far from dielectric interfaces using laser tweezers and topological configurations containing singularities. When quantum dot-in-a-rod particles are spatially colocated with a plasmonic gold nanoburst particle in a topological singularity core, its fluorescence increases because blinking is significantly suppressed and the radiative decay rate increases by nearly an order of magnitude owing to the Purcell effect. We argue that the blinking suppression is the result of the radiative rate change that mitigates Auger recombination and quantum dot ionization, consequently reducing nonradiative recombination. Our work demonstrates that topological singularities are an effective platform for studying and controlling plasmon–exciton interactions

    Charge Generation in PbS Quantum Dot Solar Cells Characterized by Temperature-Dependent Steady-State Photoluminescence

    No full text
    Charge-carrier generation and transport within PbS quantum dot (QD) solar cells is investigated by measuring the temperature-dependent steady-state photoluminescence (PL) concurrently during <i>in situ</i> current–voltage characterization. We first compare the temperature-dependent PL quenching for PbS QD films where the PbS QDs retain their original oleate ligand to that of PbS QDs treated with 1,2-ethanedithiol (EDT), producing a conductive QD layer, either on top of glass or on a ZnO nanocrystal film. We then measure and analyze the temperature-dependent PL in a completed QD-PV architecture with the structure Al/MoO<sub>3</sub>/EDT-PbS/ZnO/ITO/glass, collecting the PL and the current simultaneously. We find that at low temperatures excitons diffuse to the ZnO interface, where PL is quenched <i>via</i> interfacial charge transfer. At high temperatures, excitons dissociate in the bulk of the PbS QD film <i>via</i> phonon-assisted tunneling to nearby QDs, and that dissociation is in competition with the intrinsic radiative and nonradiative rates of the individual QDs. The activation energy for exciton dissociation in the QD-PV devices is found to be ∌40 meV, which is considerably lower than that of the electrodeless samples, and suggests unique interactions between injected and photogenerated carriers in devices

    Coupling between a Molecular Charge-Transfer Exciton and Surface Plasmons in a Nanostructured Metal Grating

    No full text
    The interaction of molecular excitons in organic thin films with surface plasmon polaritons (SPPs) in nanostructured metal electrodes represents a unique opportunity for enhancing the properties of the active layer of a photoconversion device. We present evidence of hybridization between charge-transfer excitons (CTEs) in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and SPP modes in silver grating nanostructures. Molecular and SPP absorption peaks exhibit avoided crossings in angle-dependent reflectivity experiments, which are verified by electromagnetic-field simulations of the PTCDA-grating structure. Photoluminescence measurements indicate that the radiative decay of the CTE is enhanced. Besides energetic resonance, selective coupling between the SPP and the exciton in this unique case may be aided by the oriented nature of PTCDA into 1-D “molecular stacks” as well as the delocalized nature of the CTE

    Controlling Exciton/Exciton Recombination in 2‑D Perovskite Using Exciton–Polariton Coupling

    No full text
    In this paper, we demonstrate that exciton/exciton annihilation in the 2D perovskite (PEA)2PbI4 (PEPI)a major loss mechanism in solar cells and light-emitting diodes, can be controlled through coupling of excitons with cavity polaritons. We study the excited state dynamics using time-resolved transient absorption spectroscopy and show that the system can be tuned through a strong coupling regime by varying the cavity width through the PEPI layer thickness. Remarkably, strong coupling occurs even when the cavity quality factor remains poor, providing easy optical access. We demonstrate that the observed derivative-like transient absorption spectra can be modeled using a time-dependent Rabi splitting that occurs because of transient bleaching of the excitonic states. When PEPI is strongly coupled to the cavity, the exciton/exciton annihilation rate is suppressed by 1 order of magnitude. A model that relies on the partly photonic character of polaritons explains the results as a function of detuning

    Silicon Photoelectrode Thermodynamics and Hydrogen Evolution Kinetics Measured by Intensity-Modulated High-Frequency Resistivity Impedance Spectroscopy

    No full text
    We present an impedance technique based on light intensity-modulated high-frequency resistivity (IMHFR) that provides a new way to elucidate both the thermodynamics and kinetics in complex semiconductor photoelectrodes. We apply IMHFR to probe electrode interfacial energetics on oxide-modified semiconductor surfaces frequently used to improve the stability and efficiency of photoelectrochemical water splitting systems. Combined with current density-voltage measurements, the technique quantifies the overpotential for proton reduction relative to its thermodynamic potential in Si photocathodes coated with three oxides (SiO<sub><i>x</i></sub>, TiO<sub>2</sub>, and Al<sub>2</sub>O<sub>3</sub>) and a Pt catalyst. In pH 7 electrolyte, the flatband potentials of TiO<sub>2</sub>- and Al<sub>2</sub>O<sub>3</sub>-coated Si electrodes are negative relative to samples with native SiO<sub><i>x</i></sub>, indicating that SiO<sub><i>x</i></sub> is a better protective layer against oxidative electrochemical corrosion than ALD-deposited crystalline TiO<sub>2</sub> or Al<sub>2</sub>O<sub>3</sub>. Adding a Pt catalyst to SiO<sub><i>x</i></sub>/Si minimizes proton reduction overpotential losses but at the expense of a reduction in available energy characterized by a more negative flatband potential relative to catalyst-free SiO<sub><i>x</i></sub>/Si

    Semiconductor-to-Metal Transition in Rutile TiO<sub>2</sub> Induced by Tensile Strain

    No full text
    We report the first observation of a reversible, degenerate doping of titanium dioxide with strain, which is referred to as a semiconductor-to-metal transition. Application of tensile strain to a ∌50 nm film of rutile TiO<sub>2</sub> thermally grown on a superelastic nitinol (NiTi intermetallic) substrate causes reversible degenerate doping as evidenced by electrochemistry, X-ray photoelectron spectroscopy (XPS), and conducting atomic force microscopy (CAFM). Cyclic voltammetry and impedance measurements show behavior characteristic of a highly doped <i>n</i>-type semiconductor for unstrained TiO<sub>2</sub> transitioning to metallic behavior under tensile strain. The transition reverses when strain is removed. Valence band XPS spectra show that samples strained to 5% exhibit metallic-like intensity near the Fermi level. Strain also induces a distinct transition in CAFM current–voltage curves from rectifying (typical of an <i>n</i>-type semiconductor) to ohmic (metal-like) behavior. We propose that strain raises the energy distribution of oxygen vacancies (<i>n</i>-type dopants) near the conduction band and causes an increase in carrier concentration. As the carrier concentration is increased, the width of the depletion region is reduced, which then permits electron tunneling through the space charge barrier resulting in the observed metallic behavior

    Built-in Potential and Charge Distribution within Single Heterostructured Nanorods Measured by Scanning Kelvin Probe Microscopy

    No full text
    The electrostatic potential distribution across single, isolated, colloidal heterostructured nanorods (NRs) with component materials expected to form a <i>p–n</i> junction within each NR has been measured using scanning Kelvin probe microscopy (SKPM). We compare CdS to bicomponent CdS-CdSe, CdS-PbSe, and CdS-PbS NRs prepared via different synthetic approaches to corroborate the SKPM assignments. The CdS-PbS NRs show a sharp contrast in measured potential across the material interface. We find the measured built-in potential within an individual NR to be attenuated by long-range electrostatic forces between the sample substrate, cantilever, and the measuring tip. Surface potential images were deconvoluted to yield built-in potentials ranging from 375 to 510 meV in the heterostructured NRs. We deduce the overall built-in potential as well as the charge distribution across each segment of the heterostructured NRs by combining SKPM data with simulations of the system

    Shape-Dependent Oriented Trapping and Scaffolding of Plasmonic Nanoparticles by Topological Defects for Self-Assembly of Colloidal Dimers in Liquid Crystals

    No full text
    We demonstrate scaffolding of plasmonic nanoparticles by topological defects induced by colloidal microspheres to match their surface boundary conditions with a uniform far-field alignment in a liquid crystal host. Displacing energetically costly liquid crystal regions of reduced order, anisotropic nanoparticles with concave or convex shapes not only stably localize in defects but also self-orient with respect to the microsphere surface. Using laser tweezers, we manipulate the ensuing nanoparticle-microsphere colloidal dimers, probing the strength of elastic binding and demonstrating self-assembly of hierarchical colloidal superstructures such as chains and arrays

    Shape-Dependent Oriented Trapping and Scaffolding of Plasmonic Nanoparticles by Topological Defects for Self-Assembly of Colloidal Dimers in Liquid Crystals

    No full text
    We demonstrate scaffolding of plasmonic nanoparticles by topological defects induced by colloidal microspheres to match their surface boundary conditions with a uniform far-field alignment in a liquid crystal host. Displacing energetically costly liquid crystal regions of reduced order, anisotropic nanoparticles with concave or convex shapes not only stably localize in defects but also self-orient with respect to the microsphere surface. Using laser tweezers, we manipulate the ensuing nanoparticle-microsphere colloidal dimers, probing the strength of elastic binding and demonstrating self-assembly of hierarchical colloidal superstructures such as chains and arrays
    corecore