22 research outputs found

    A Hybrid Maximum Power Point Search Method Using Temperature Measurements in Partial Shading Conditions

    No full text
    Photovoltaic panels have a non-linear current-voltage characteristics to produce the maximum power at only one point called the maximum power point. In the case of the uniform illumination a single solar panel shows only one maximum power, which is also the global maximum power point. In the case an irregularly illuminated photovoltaic panel many local maxima on the power-voltage curve can be observed and only one of them is the global maximum. The proposed algorithm detects whether a solar panel is in the uniform insolation conditions. Then an appropriate strategy of tracking the maximum power point is taken using a decision algorithm. The proposed method is simulated in the environment created by the authors, which allows to stimulate photovoltaic panels in real conditions of lighting, temperature and shading

    A Hybrid Maximum Power Point Search Method Using Temperature Measurements in Partial Shading Conditions

    No full text
    Photovoltaic panels have a non-linear current-voltage characteristics to produce the maximum power at only one point called the maximum power point. In the case of the uniform illumination a single solar panel shows only one maximum power, which is also the global maximum power point. In the case an irregularly illuminated photovoltaic panel many local maxima on the power-voltage curve can be observed and only one of them is the global maximum. The proposed algorithm detects whether a solar panel is in the uniform insolation conditions. Then an appropriate strategy of tracking the maximum power point is taken using a decision algorithm. The proposed method is simulated in the environment created by the authors, which allows to stimulate photovoltaic panels in real conditions of lighting, temperature and shading

    Prony’s Method with Reduced Sampling - Numerical Aspects

    No full text
    This paper presents a new modification of the least-squares Prony’s method with reduced sampling, which allows for a significant reduction in the number of the analysed signal samples collected per unit time. The specific combination of non-uniform sampling with Prony’s method enables sampling of the analysed signals at virtually any average frequency, regardless of the Nyquist frequency, maintaining high accuracy in parameter estimation of sinusoidal signal components. This property allows using the method in measuring devices, such as for electric power quality testing equipped with low power signal processors, which in turn contributes to reducing complexity of these devices. This paper presents research on a method for selecting a sampling frequency and an analysis window length for the presented method, which provide maximum estimation accuracy for Prony’s model component parameters. This paper presents simulation tests performed in terms of the proposed method application for analysis of harmonics and interharmonics in electric power signals. Furthermore, the paper provides sensitivity analysis of the method, in terms of common interferences occurring in the actual measurement systems

    ALGORITHMS AND METHODS FOR ANALYSIS OF THE OPTICAL STRUCTURE FACTOR OF FRACTAL AGGREGATES

    No full text
    International audienceWe introduce numerical methods and algorithms to estimate the main parameters of fractal-like particle aggregates from their optical structure factor (i.e. light scattering diagrams). The first algorithm is based on a direct and simple method, but its applicability is limited to aggregates with large size parameter and intermediate fractal dimension. The second algorithm requires to build calibration curves based on accurate particle agglomeration and particle light scattering models. It allows analyzing the optical structure factor of much smaller aggregates, regardless of their fractal dimension and the size of the single particles. Therefore, this algorithm as well as the introduction of a criteria curve to detect the different scattering regimes, are thought to be powerful tools to perform reliable and reproducible analyses

    A new approach to water cooling of photovoltaic panels with a tracking system

    Get PDF
    The article presents a water-cooling system for photovoltaic (PV) modules using a two-axis tracking system that tracks the apparent position of the Sun on the celestial sphere. The cooling system consists of 150 adjustable spray nozzles that cool the bottom layer of PV modules. The refrigerant is water taken from a tank with a capacity of 7 m 3. A water recovery system reduces its consumption with efficiency of approximately 90%. The experimental setup consists of a full-size photovoltaic installation made of 10 modules with an output power of 3.5 kWp combined with a tracking system. The article presents an analysis of the cooling system efficiency in various meteorological conditions. Measurements of energy production were performed in the annual cycle using three different types of photovoltaic installations: stationary, two-axis tracking system and two-axis tracking system combined with the cooling system

    Fast four-point estimators of sinusoidal signal parameters – numerical optimisations for embedded measuring systems

    No full text
    The paper presents an algorithm for determining parameters of single sinusoidal components contained in the analyzed digital signal with the use of a small number of mathematical operations. The proposed algorithm can be applied, among others, in measuring devices to monitor basic parameters of electric energy quality as well as in devices used to determine the phasor in the power system. The proposed simplification of the algorithm for determining the sinusoidal components of the analyzed signal allows to use it in embedded devices with low computing power, which translates into lower cost of construction of devices of this type, while maintaining full functionality of the measuring system. The article contains a mathematical argument, which leads to the proposed algorithm, then the optimization of the number of performed mathematical operations is presented. The last part of the paper includes information about performed mathematical operations and presents exemplary times of execution of the algorithm for simple embedded devices

    Influence of A/D Quantization in an Interpolated DFT Based System of Power Control with A Small Delay

    No full text
    Fast and accurate grid signal frequency estimation is a very important issue in the control of renewable energy systems. Important factors that influence the estimation accuracy include the A/D converter parameters in the inverter control system. This paper presents the influence of the number of A/D converter bits b, the phase shift of the grid signal relative to the time window, the width of the time window relative to the grid signal period (expressed as a cycle in range (CiR) parameter) and the number of N samples obtained in this window with the A/D converter on the developed estimation method results. An increase in the number b by 8 decreases the estimation error by approximately 256 times. The largest estimation error occurs when the signal module maximum is in the time window center (for small values of CiR) or when the signal value is zero in the time window center (for large values of CiR). In practical applications, the dominant component of the frequency estimation error is the error caused by the quantization noise, and its range is from approximately 8×10-10 to 6×10-4

    ALGORITHMS AND METHODS FOR ANALYSIS OF THE OPTICAL STRUCTURE FACTOR OF FRACTAL AGGREGATES

    No full text
    International audienceWe introduce numerical methods and algorithms to estimate the main parameters of fractal-like particle aggregates from their optical structure factor (i.e. light scattering diagrams). The first algorithm is based on a direct and simple method, but its applicability is limited to aggregates with large size parameter and intermediate fractal dimension. The second algorithm requires to build calibration curves based on accurate particle agglomeration and particle light scattering models. It allows analyzing the optical structure factor of much smaller aggregates, regardless of their fractal dimension and the size of the single particles. Therefore, this algorithm as well as the introduction of a criteria curve to detect the different scattering regimes, are thought to be powerful tools to perform reliable and reproducible analyses

    New Parameters Extracted from Tilted Fiber Bragg Grating Spectra for the Determination of the Refractive Index and Cut-Off Wavelength

    No full text
    Tilted fiber Bragg grating (TFBG) is a very popular fiber optic element that is used as a sensor for various physical quantities. The calculation of the refractive index of a substance surrounding the TFBG is based on its spectrum demodulation, which consists of determining a certain parameter that is correlated with the sought quantity. The most commonly used parameter is the area created by the maxima and minima of the cladding mode resonances. In this article, we propose a new group of methods, which are based on calculating the parameters related to the spectrum differences between the local average values in the range of occurrence of the cladding modes. The basic parameter used in this group of methods is the mean absolute deviation from the local mean, which is characterized by the best linearity among the considered group of methods. The calculated parameters, in their cumulative form, can also be used to determine the cut-off wavelength, which can also indirectly indicate the refractive index value. The proposed approaches were compared, in terms of measurement resolution, to the most commonly used methods, such as the cladding modes’ envelope area and the spectral contour lengths

    Precision Temperature Control System with Low EMI for Applications in Analyzing Thermal Properties of Highly Sensitive Piezoelectric Sensors

    No full text
    A low electromagnetic interference (EMI), precision temperature control system for sensitive piezoelectric sensors stabilization and their thermal characteristics research was proposed. Quartz crystal microbalance (QCM) was chosen as the device to be tested. Recently, QCMs found use in many fields of study such as biology, chemistry, and aerospace. They often operate in harsh environments and are exposed to many external factors including temperature fluctuations, to which QCMs are highly susceptible. Such disturbances can cause undesirable resonant frequency shifts resulting in measurement errors that are difficult to eliminate. The proposed solution enables measurements of QCMs thermal characteristics, effectiveness evaluation of temperature compensation methods, and testing of the frequency stability. As a part of the developed solution, two independent temperature regulators were used: first to maintain the QCM crystal at desired temperature, and second to keep the QCM oscillator circuit at fixed temperature. The single regulator consists of a thermoelectric module (TEC) used for both heating and cooling. Two considered TEC driving methods were compared in terms of EMI and their impact on the QCM signal quality. The proposed system was examined for its temperature stabilization capability showing high stability of 11 mKp-p for one hour and the setpoint accuracy of ±15 mK in the full temperature range
    corecore