4 research outputs found

    DNA methylation landscape of ocular tissue relative to matched peripheral blood

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Epigenetic variation is implicated in a range of non-communicable diseases, including those of the eye. However, investigating the role of epigenetic variation in central tissues, such as eye or brain, remains problematic and peripheral tissues are often used as surrogates. In this study, matched human blood and eye tissue (n = 8) were obtained post-mortem and DNA methylation profiling performed on blood, neurosensory retina, retinal pigment epithelium (RPE)/choroid and optic nerve tissue using the Illumina Infinium HumanMethylation450 platform. Unsupervised clustering and principal components analysis revealed tissue of origin as the main driver of methylation variation. Despite this, there was a strong correlation of methylation profiles between tissues with >255,000 CpG sites found to have similar methylation levels. An additional ~16,000 show similarity across ocular tissues only. A small proportion of probes showing inter-individual variation in blood co-varied with eye tissues within individuals, however much of this variation may be genetically driven. An improved understanding of the epigenetic landscape of the eye will have important implications for understanding eye disease. Despite a generally high correlation irrespective of origin, tissue type is the major driver of methylation variation, with only limited covariation between blood and any specific ocular tissue

    Application of Organic Inhibitors to the Corrosion of Materials AISI 1070 Steel

    Get PDF
    AISI 1070 steel is a material that has corrosion when it reacts with the environment. One way to inhibit the corrosion rate is by using organic inhibitors. The organic inhibitors used mango leaves and mango rinds with variations in the concentration of organic inhibitors of 0%, 6%, and 8%, respectively. This study aimed to determine the effectiveness of mango leaf extract and mango rinds as an inhibitor against the corrosion rate of AISI 1070 Steel. The extraction was carried out using the Maceration Method. Fourier Transform Infrared (FTIR), Potenzyodinamic, and Weight Loss tests were carried out in this study.  FTIR results show that both mango rinds and mango leaf have ingredients that were able to inhibit the corrosion rate, such as flavonoid functional groups including C – H, C = O, and C – O. Using the weight-loss method, the best corrosion rate was found in the mango rinds extract with a concentration of 8 mL, which was 31.784 mm/year with an inhibition efficiency of 92%. The highest corrosion rate was in 2M H2SO4 solution using potentiodynamic, without a mixture of inhibitors, that is 0.15589478 mm/year

    Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta-gonad-mesonephros

    No full text
    The ability to generate hematopoietic stem cells from human pluripotent cells would enable many biomedical applications. We find that hematopoietic CD34+ cells in spin embryoid bodies derived from human embryonic stem cells (hESCs) lack HOXA expression compared with repopulation-competent human cord blood CD34+ cells, indicating incorrect mesoderm patterning. Using reporter hESC lines to track the endothelial (SOX17) to hematopoietic (RUNX1C) transition that occurs in development, we show that simultaneous modulation of WNT and ACTIVIN signaling yields CD34+ hematopoietic cells with HOXA expression that more closely resembles that of cord blood. The cultures generate a network of aorta-like SOX17+ vessels from which RUNX1C+ blood cells emerge, similar to hematopoiesis in the aorta-gonad-mesonephros (AGM). Nascent CD34+ hematopoietic cells and corresponding cells sorted from human AGM show similar expression of cell surface receptors, signaling molecules and transcription factors. Our findings provide an approach to mimic in vitro a key early stage in human hematopoiesis for the generation of AGM-derived hematopoietic lineages from hESCs
    corecore