857 research outputs found

    Bats and the landscape: The influence of edge effects and forest cover on bat activity

    Get PDF
    The habitats in which bat species may most effectively forage are often determined by species-specific differences in wing morphology and echolocation call structure. Habitat edges are important for bat navigation and foraging, but no study to date has examined the depth of edge influence (DEI--the extent of quantifiable change in activity with distance from an edge) for bats. I predicted that DEI would vary with species-specific differences in wing structure and echolocation call characteristics. Additionally, because different habitats may be required to fulfill species’ foraging and roost requirements, I predicted that bat activity would be highest in areas with a moderate amount of forest cover. I acoustically sampled at eight sites in Ontario a minimum of ten times each between June 2010 and August 2011. Regardless of wing morphology and call structure, bat activity was highest at the edge for all species. The DEI of all species was 40 m into both the edge and forest. These results will be useful for determining proper placement of microphones in future acoustic studies, and may inform effective management decisions

    Complexity for Modules Over the Classical Lie Superalgebra gl(m|n)

    Full text link
    Let g=g0ˉg1ˉ\mathfrak{g}=\mathfrak{g}_{\bar{0}}\oplus \mathfrak{g}_{\bar{1}} be a classical Lie superalgebra and F\mathcal{F} be the category of finite dimensional g\mathfrak{g}-supermodules which are completely reducible over the reductive Lie algebra g0ˉ\mathfrak{g}_{\bar{0}}. In an earlier paper the authors demonstrated that for any module MM in F\mathcal{F} the rate of growth of the minimal projective resolution (i.e., the complexity of MM) is bounded by the dimension of g1ˉ\mathfrak{g}_{\bar{1}}. In this paper we compute the complexity of the simple modules and the Kac modules for the Lie superalgebra gl(mn)\mathfrak{gl}(m|n). In both cases we show that the complexity is related to the atypicality of the block containing the module.Comment: 32 page

    Chaotic Accretion in a Non-Stationary Electromagnetic Field of a Slowly Rotating Compact Star

    Get PDF
    We investigate charge accretion in vicinity of a slowly rotating compact star with a non-stationary electromagnetic field. Exact solutions to the general relativistic Maxwell equations are obtained for a star formed of a highly degenerate plasma with a gravitational field given by the linearized Kerr metric. These solutions are used to formulate and then to study numerically the equations of motion for a charged particle in star's vicinity using the gravitoelectromagnetic force law. The analysis shows that close to the star charge accretion does not always remain ordered. It is found that the magnetic field plays the dominant role in the onset of chaos near the star's surface.Comment: 9 pages, 4 figure

    Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics

    Get PDF
    A framework is introduced which explains the existence and similarities of most exact solutions of the Einstein equations with a wide range of sources for the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian formulation. This class includes the spatially homogeneous cosmological models and the astrophysically interesting static spherically symmetric models as well as the stationary cylindrically symmetric models. The framework involves methods for finding and exploiting hidden symmetries and invariant submanifolds of the Hamiltonian formulation of the field equations. It unifies, simplifies and extends most known work on hypersurface-homogeneous exact solutions. It is shown that the same framework is also relevant to gravitational theories with a similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for publication in Phys. Rev.

    Monotonic functions in Bianchi models: Why they exist and how to find them

    Full text link
    All rigorous and detailed dynamical results in Bianchi cosmology rest upon the existence of a hierarchical structure of conserved quantities and monotonic functions. In this paper we uncover the underlying general mechanism and derive this hierarchical structure from the scale-automorphism group for an illustrative example, vacuum and diagonal class A perfect fluid models. First, kinematically, the scale-automorphism group leads to a reduced dynamical system that consists of a hierarchy of scale-automorphism invariant sets. Second, we show that, dynamically, the scale-automorphism group results in scale-automorphism invariant monotone functions and conserved quantities that restrict the flow of the reduced dynamical system.Comment: 26 pages, replaced to match published versio

    Electrocardiogram of the Mixmaster Universe

    Full text link
    The Mixmaster dynamics is revisited in a new light as revealing a series of transitions in the complex scale invariant scalar invariant of the Weyl curvature tensor best represented by the speciality index S\mathcal{S}, which gives a 4-dimensional measure of the evolution of the spacetime independent of all the 3-dimensional gauge-dependent variables except for the time used to parametrize it. Its graph versus time characterized by correlated isolated pulses in its real and imaginary parts corresponding to curvature wall collisions serves as a sort of electrocardiogram of the Mixmaster universe, with each such pulse pair arising from a single circuit or ``complex pulse'' around the origin in the complex plane. These pulses in the speciality index and their limiting points on the real axis seem to invariantly characterize some of the so called spike solutions in inhomogeneous cosmology and should play an important role as a gauge invariant lens through which to view current investigations of inhomogeneous Mixmaster dynamics.Comment: version 3: 20 pages iopart style, 19 eps figure files for 8 latex figures; added example of a transient true spike to contrast with the permanent true spike example from the Lim family of true spike solutions; remarks in introduction and conclusion adjusted and toned down; minor adjustments to the remaining tex

    Covariant q-differential operators and unitary highest weight representations for U_q su(n,n)

    Full text link
    We investigate a one-parameter family of quantum Harish-Chandra modules of U_q sl(2n). This family is an analog of the holomorphic discrete series of representations of the group SU(n,n) for the quantum group U_q su(n, n). We introduce a q-analog of "the wave" operator (a determinant-type differential operator) and prove certain covariance property of its powers. This result is applied to the study of some quotients of the above-mentioned quantum Harish-Chandra modules. We also prove an analog of a known result by J.Faraut and A.Koranyi on the expansion of reproducing kernels which determines the analytic continuation of the holomorphic discrete series.Comment: 26 page

    Prime ideals in nilpotent Iwasawa algebras

    Full text link
    Let G be a nilpotent complete p-valued group of finite rank and let k be a field of characteristic p. We prove that every faithful prime ideal of the Iwasawa algebra kG is controlled by the centre of G, and use this to show that the prime spectrum of kG is a disjoint union of commutative strata. We also show that every prime ideal of kG is completely prime. The key ingredient in the proof is the construction of a non-commutative valuation on certain filtered simple Artinian rings

    Thermodynamic assessment of oxide system In2O3‑SnO2‑ZnO

    Get PDF
    Received: 28.11.2018. Accepted: 14.12.2018. Published: 31.12.2018.The In2O3‑SnO2‑ZnO system is of special interest for applications as transparent conducting oxides and also transparent semiconductors. In the present work, a thermodynamic assessment for this system is discussed using all available experimental data on phase equilibria and thermodynamic properties. All subsystems including elemental combinations were considered in order to generate a self-consistent Gibbs energy dataset for further calculation and prediction of thermodynamic properties of the system. The modified associate species model was used for the description of the liquid phase. Particular attention was given to two significant solid solution phases: Spinel with the formula Zn(2–x)Sn(1–x)In2xO4 based on Zn2SnO4 and Bixbyite based on In2O3 and extending strongly toward the SnZnO3 composition according to the formula In(2–2x)SnxZnxO3. In addition to the component oxides, nine quasi-binary compounds located in the In2O3‑ZnO binary subsystem have also been included in the database as stoichiometric phases

    Almost Ideal Clocks in Quantum Cosmology: A Brief Derivation of Time

    Get PDF
    A formalism for quantizing time reparametrization invariant dynamics is considered and applied to systems which contain an `almost ideal clock.' Previously, this formalism was successfully applied to the Bianchi models and, while it contains no fundamental notion of `time' or `evolution,' the approach does contain a notion of correlations. Using correlations with the almost ideal clock to introduce a notion of time, the work below derives the complete formalism of external time quantum mechanics. The limit of an ideal clock is found to be closely associated with the Klein-Gordon inner product and the Newton-Wigner formalism and, in addition, this limit is shown to fail for a clock that measures metric-defined proper time near a singularity in Bianchi models.Comment: 16 pages ReVTeX (35 preprint pages
    corecore