27 research outputs found

    Infant Ustekinumab Clearance, Risk of Infection, and Development After Exposure During Pregnancy

    Get PDF
    Background:Evidence on ustekinumab safety in pregnancy is gradually expanding, but its clearance in the postnatal period is unknown. The aim of this study was to investigate ustekinumab concentrations in umbilical cord blood and rates of clearance after birth, as well as how these correlate with maternal drug concentrations, risk of infection, and developmental milestones during the first year of life. Methods: Pregnant women with inflammatory bowel disease were prospectively recruited from 19 hospitals in Denmark and the Netherlands between 2018 and 2022. Infant infections leading to hospitalization/antibiotics and developmental milestones were assessed. Serum ustekinumab concentrations were measured at delivery and specific time points. Nonlinear regression analysis was applied to estimate clearance. Results:In 78 live-born infants from 76 pregnancies, we observed a low risk of adverse pregnancy outcomes and normal developmental milestones. At birth, the median infant-mother ustekinumab ratio was 2.18 (95% confidence interval, 1.69–2.81). Mean time to infant clearance was 6.7 months (95% confidence interval, 6.1–7.3 months). One in 4 infants at 6 months had an extremely low median concentration of 0.015 μg/mL (range 0.005–0.12 μg/mL). No variation in median ustekinumab concentration was noted between infants with (2.8 [range 0.4–6.9] μg/mL) and without (3.1 [range 0.7–11.0] μg/mL) infections during the first year of life (P = .41). Conclusions: No adverse signals after intrauterine exposure to ustekinumab were observed with respect to pregnancy outcome, infections, or developmental milestones during the first year of life. Infant ustekinumab concentration was not associated with risk of infections. With the ustekinumab clearance profile, live attenuated vaccination from 6 months of age seems of low risk.</p

    Serum proteomics reveals hemophagocytic lymphohistiocytosis-like phenotype in a subset of patients with multisystem inflammatory syndrome in children

    Get PDF
    Children with Multisystem Inflammatory Syndrome in Children (MIS-C) can present with thrombocytopenia, which is a key feature of hemophagocytic lymphohistiocytosis (HLH). We hypothesized that thrombocytopenic MIS-C patients have more features of HLH. Clinical characteristics and routine laboratory parameters were collected from 228 MIS-C patients, of whom 85 (37%) were thrombocytopenic. Thrombocytopenic patients had increased ferritin levels; reduced leukocyte subsets; and elevated levels of ASAT and ALAT. Soluble IL-2RA was higher in thrombocytopenic children than in non-thrombocytopenic children. T-cell activation, TNF-alpha and IFN-gamma signaling markers were inversely correlated with thrombocyte levels, consistent with a more pronounced cytokine storm syndrome. Thrombocytopenia was not associated with severity of MIS-C and no pathogenic variants were identified in HLH-related genes. This suggests that thrombocytopenia in MIS-C is not a feature of a more severe disease phenotype, but the consequence of a distinct hyperinflammatory immunopathological process in a subset of children.</p

    Serum proteomics reveals hemophagocytic lymphohistiocytosis-like phenotype in a subset of patients with multisystem inflammatory syndrome in children

    Get PDF
    Children with Multisystem Inflammatory Syndrome in Children (MIS-C) can present with thrombocytopenia, which is a key feature of hemophagocytic lymphohistiocytosis (HLH). We hypothesized that thrombocytopenic MIS-C patients have more features of HLH. Clinical characteristics and routine laboratory parameters were collected from 228 MIS-C patients, of whom 85 (37%) were thrombocytopenic. Thrombocytopenic patients had increased ferritin levels; reduced leukocyte subsets; and elevated levels of ASAT and ALAT. Soluble IL-2RA was higher in thrombocytopenic children than in non-thrombocytopenic children. T-cell activation, TNF-alpha and IFN-gamma signaling markers were inversely correlated with thrombocyte levels, consistent with a more pronounced cytokine storm syndrome. Thrombocytopenia was not associated with severity of MIS-C and no pathogenic variants were identified in HLH-related genes. This suggests that thrombocytopenia in MIS-C is not a feature of a more severe disease phenotype, but the consequence of a distinct hyperinflammatory immunopathological process in a subset of children.</p

    Machine learning used to compare the diagnostic accuracy of risk factors, clinical signs and biomarkers and to develop a new prediction model for neonatal early-onset sepsis

    Get PDF
    Background: Current strategies for risk stratification and prediction of neonatal early-onset sepsis (EOS) are inefficient and lack diagnostic performance. The aim of this study was to use machine learning to analyze the diagnostic accuracy of risk factors (RFs), clinical signs and biomarkers and to develop a prediction model for culture-proven EOS. We hypothesized that the contribution to diagnostic accuracy of biomarkers is higher than of RFs or clinical signs. Study Design: Secondary analysis of the prospective international multicenter NeoPInS study. Neonates born after completed 34 weeks of gestation with antibiotic therapy due to suspected EOS within the first 72 hours of life participated. Primary outcome was defined as predictive performance for culture-proven EOS with variables known at the start of antibiotic therapy. Machine learning was used in form of a random forest classifier. Results: One thousand six hundred eighty-five neonates treated for suspected infection were analyzed. Biomarkers were superior to clinical signs and RFs for prediction of culture-proven EOS. C-reactive protein and white blood cells were most important for the prediction of the culture result. Our full model achieved an area-under-the-receiver-operating-characteristic-curve of 83.41% (±8.8%) and an area-under-the-precision-recall-curve of 28.42% (±11.5%). The predictive performance of the model with RFs alone was comparable with random. Conclusions: Biomarkers have to be considered in algorithms for the management of neonates suspected of EOS. A 2-step approach with a screening tool for all neonates in combination with our model in the preselected population with an increased risk for EOS may have the potential to reduce the start of unnecessary antibiotics

    Serum proteomics reveals hemophagocytic lymphohistiocytosis-like phenotype in a subset of patients with multisystem inflammatory syndrome in children

    Get PDF
    Children with Multisystem Inflammatory Syndrome in Children (MIS-C) can present with thrombocytopenia, which is a key feature of hemophagocytic lymphohistiocytosis (HLH). We hypothesized that thrombocytopenic MIS-C patients have more features of HLH. Clinical characteristics and routine laboratory parameters were collected from 228 MIS-C patients, of whom 85 (37%) were thrombocytopenic. Thrombocytopenic patients had increased ferritin levels; reduced leukocyte subsets; and elevated levels of ASAT and ALAT. Soluble IL-2RA was higher in thrombocytopenic children than in non-thrombocytopenic children. T-cell activation, TNF-alpha and IFN-gamma signaling markers were inversely correlated with thrombocyte levels, consistent with a more pronounced cytokine storm syndrome. Thrombocytopenia was not associated with severity of MIS-C and no pathogenic variants were identified in HLH-related genes. This suggests that thrombocytopenia in MIS-C is not a feature of a more severe disease phenotype, but the consequence of a distinct hyperinflammatory immunopathological process in a subset of children

    C-Reactive Protein, Procalcitonin, and White Blood Count to Rule Out Neonatal Early-onset Sepsis Within 36 Hours: A Secondary Analysis of the Neonatal Procalcitonin Intervention Study.

    Get PDF
    BACKGROUND: Neonatal early-onset sepsis (EOS) is one of the main causes of global neonatal mortality and morbidity, and initiation of early antibiotic treatment is key. However, antibiotics may be harmful. METHODS: We performed a secondary analysis of results from the Neonatal Procalcitonin Intervention Study, a prospective, multicenter, randomized, controlled intervention study. The primary outcome was the diagnostic accuracy of serial measurements of C-reactive protein (CRP), procalcitonin (PCT), and white blood count (WBC) within different time windows to rule out culture-positive EOS (proven sepsis). RESULTS: We analyzed 1678 neonates with 10 899 biomarker measurements (4654 CRP, 2047 PCT, and 4198 WBC) obtained within the first 48 hours after the start of antibiotic therapy due to suspected EOS. The areas under the curve (AUC) comparing no sepsis vs proven sepsis for maximum values of CRP, PCT, and WBC within 36 hours were 0.986, 0.921, and 0.360, respectively. The AUCs for CRP and PCT increased with extended time frames up to 36 hours, but there was no further difference between start to 36 hours vs start to 48 hours. Cutoff values at 16 mg/L for CRP and 2.8 ng/L for PCT provided a sensitivity of 100% for discriminating no sepsis vs proven sepsis. CONCLUSIONS: Normal serial CRP and PCT measurements within 36 hours after the start of empiric antibiotic therapy can exclude the presence of neonatal EOS with a high probability. The negative predictive values of CRP and PCT do not increase after 36 hours

    Severe Pediatric COVID-19 and Multisystem Inflammatory Syndrome in Children from Wild-type to Population Immunity: A Prospective Multicenter Cohort Study with Real-time Reporting

    Get PDF
    Background: SARS-CoV-2 variant evolution and increasing immunity altered the impact of pediatric SARS-CoV-2 infection. Public health decision-making relies on accurate and timely reporting of clinical data. Methods: This international hospital-based multicenter, prospective cohort study with real-time reporting was active from March 2020 to December 2022. We evaluated longitudinal incident rates and risk factors for disease severity. Results: We included 564 hospitalized children with acute COVID-19 (n = 375) or multisystem inflammatory syndrome in children (n = 189) from the Netherlands, Curaçao and Surinam. In COVID-19, 134/375 patients (36%) needed supplemental oxygen therapy and 35 (9.3%) required intensive care treatment. Age above 12 years and preexisting pulmonary conditions were predictors for severe COVID-19. During omicron, hospitalized children had milder disease. During population immunity, the incidence rate of pediatric COVID-19 infection declined for older children but was stable for children below 1 year. The incidence rate of multisystem inflammatory syndrome in children was highest during the delta wave and has decreased rapidly since omicron emerged. Real-time reporting of our data impacted national pediatric SARS-CoV-2 vaccination- and booster-policies. Conclusions: Our data supports the notion that similar to adults, prior immunity protects against severe sequelae of SARS-CoV-2 infections in children. Real-time reporting of accurate and high-quality data is feasible and impacts clinical and public health decision-making. The reporting framework of our consortium is readily accessible for future SARS-CoV-2 waves and other emerging infections

    Validation of the Pharmacokinetic Model for Anti-TNFα Clearance in Infants Exposed to Anti-TNFα During Pregnancy

    No full text
    Background and Aims: The ECCO guideline recommends postponing live attenuated vaccines in infants exposed to anti-tumour necrosis factor alpha [anti-TNFα] in utero until drug clearance. The aim was to validate the predictive performance of the anti-TNFα clearance model. Methods: Newborns and data for anti-TNFα concentrations from the prospective PETIT cohort were included. The anti-TNFα clearance model was used to predict all measured concentrations in the PETIT cohort, based on the measured cord blood concentration and the mean population clearance described in the model. Bayesian maximum a posteriori optimization was used to estimate the use of drug monitoring. Predictive capability and drug monitoring were assessed through mean absolute error [MAE], root mean squared prediction error, and limits of agreement according to Bland and Altman. Results:Observed drug concentrations after birth were within the 80% prediction interval in 94% of adalimumab samples and 93% of infliximab samples. The anti-TNFα clearance model accurately predicted the concentration at 6 months after birth with an MAE of 0.03 µg/mL [SD 0.03] for adalimumab and 0.11 µg/mL [SD 0.18] for infliximab based on cord blood concentrations. Addition of an additional sample between 1 and 4 months after birth improved the predictive accuracy for infliximab (MAE 0.05 [SD 0.09]) but not for adalimumab. Guidance for use in clinical practice was formulated. Conclusions: The validity of the anti-TNFα clearance model is high, and hence can be used to guide clinicians regarding the timing of live vaccines in infants exposed to adalimumab or infliximab in utero.</p

    Validation of the Pharmacokinetic Model for Anti-TNFα Clearance in Infants Exposed to Anti-TNFα During Pregnancy

    No full text
    Background and Aims: The ECCO guideline recommends postponing live attenuated vaccines in infants exposed to anti-tumour necrosis factor alpha [anti-TNFα] in utero until drug clearance. The aim was to validate the predictive performance of the anti-TNFα clearance model. Methods: Newborns and data for anti-TNFα concentrations from the prospective PETIT cohort were included. The anti-TNFα clearance model was used to predict all measured concentrations in the PETIT cohort, based on the measured cord blood concentration and the mean population clearance described in the model. Bayesian maximum a posteriori optimization was used to estimate the use of drug monitoring. Predictive capability and drug monitoring were assessed through mean absolute error [MAE], root mean squared prediction error, and limits of agreement according to Bland and Altman. Results:Observed drug concentrations after birth were within the 80% prediction interval in 94% of adalimumab samples and 93% of infliximab samples. The anti-TNFα clearance model accurately predicted the concentration at 6 months after birth with an MAE of 0.03 µg/mL [SD 0.03] for adalimumab and 0.11 µg/mL [SD 0.18] for infliximab based on cord blood concentrations. Addition of an additional sample between 1 and 4 months after birth improved the predictive accuracy for infliximab (MAE 0.05 [SD 0.09]) but not for adalimumab. Guidance for use in clinical practice was formulated. Conclusions: The validity of the anti-TNFα clearance model is high, and hence can be used to guide clinicians regarding the timing of live vaccines in infants exposed to adalimumab or infliximab in utero.</p
    corecore