333 research outputs found

    Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    Get PDF
    Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities were most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths

    Assembling large, complex environmental metagenomes

    Full text link
    The large volumes of sequencing data required to sample complex environments deeply pose new challenges to sequence analysis approaches. De novo metagenomic assembly effectively reduces the total amount of data to be analyzed but requires significant computational resources. We apply two pre-assembly filtering approaches, digital normalization and partitioning, to make large metagenome assemblies more comput\ ationaly tractable. Using a human gut mock community dataset, we demonstrate that these methods result in assemblies nearly identical to assemblies from unprocessed data. We then assemble two large soil metagenomes from matched Iowa corn and native prairie soils. The predicted functional content and phylogenetic origin of the assembled contigs indicate significant taxonomic differences despite similar function. The assembly strategies presented are generic and can be extended to any metagenome; full source code is freely available under a BSD license.Comment: Includes supporting informatio

    Detection in Soil of a Deletion in an Engineered DNA Sequence by Using DNA Probes

    Get PDF
    Two Pseudomonas strains were engineered to contain the nptII gene and plasmid vector sequences in their chromosomes. After incubation of these strains in nonsterile soil, total bacterial DNA was isolated and analyzed by Southern blot hybridization with the nptII gene and the plasmid vector as probes. In addition to the expected bands of hybridization, a new band corresponding to the loss of vector sequences from the chromosome while retaining the nptII gene was observed for one of the strains. The more stressful conditions encountered in soil appeared to increase the frequency of loss of the vector sequences from this strain

    Differential Functional Constraints Cause Strain-Level Endemism in Polynucleobacter Populations.

    Get PDF
    The adaptation of bacterial lineages to local environmental conditions creates the potential for broader genotypic diversity within a species, which can enable a species to dominate across ecological gradients because of niche flexibility. The genus Polynucleobacter maintains both free-living and symbiotic ecotypes and maintains an apparently ubiquitous distribution in freshwater ecosystems. Subspecies-level resolution supplemented with metagenome-derived genotype analysis revealed that differential functional constraints, not geographic distance, produce and maintain strain-level genetic conservation in Polynucleobacter populations across three geographically proximal riverine environments. Genes associated with cofactor biosynthesis and one-carbon metabolism showed habitat specificity, and protein-coding genes of unknown function and membrane transport proteins were under positive selection across each habitat. Characterized by different median ratios of nonsynonymous to synonymous evolutionary changes (dN/dS ratios) and a limited but statistically significant negative correlation between the dN/dS ratio and codon usage bias between habitats, the free-living and core genotypes were observed to be evolving under strong purifying selection pressure. Highlighting the potential role of genetic adaptation to the local environment, the two-component system protein-coding genes were highly stable (dN/dS ratio, < 0.03). These results suggest that despite the impact of the habitat on genetic diversity, and hence niche partition, strong environmental selection pressure maintains a conserved core genome for Polynucleobacter populations. IMPORTANCE Understanding the biological factors influencing habitat-wide genetic endemism is important for explaining observed biogeographic patterns. Polynucleobacter is a genus of bacteria that seems to have found a way to colonize myriad freshwater ecosystems and by doing so has become one of the most abundant bacteria in these environments. We sequenced metagenomes from locations across the Chicago River system and assembled Polynucleobacter genomes from different sites and compared how the nucleotide composition, gene codon usage, and the ratio of synonymous (codes for the same amino acid) to nonsynonymous (codes for a different amino acid) mutations varied across these population genomes at each site. The environmental pressures at each site drove purifying selection for functional traits that maintained a streamlined core genome across the Chicago River Polynucleobacter population while allowing for site-specific genomic adaptation. These adaptations enable Polynucleobacter to become dominant across different riverine environmental gradients

    Permafrost meta-omics and climate change

    Get PDF
    Permanently frozen soil, or permafrost, covers a large portion of the Earth's terrestrial surface and represents a unique environment for cold-adapted microorganisms. As permafrost thaws, previously protected organic matter becomes available for microbial degradation. Microbes that decompose soil carbon produce carbon dioxide and other greenhouse gases, contributing substantially to climate change. Next-generation sequencing and other -omics technologies offer opportunities to discover the mechanisms by which microbial communities regulate the loss of carbon and the emission of greenhouse gases from thawing permafrost regions. Analysis of nucleic acids and proteins taken directly from permafrost-associated soils has provided new insights into microbial communities and their functions in Arctic environments that are increasingly impacted by climate change. In this article we review current information from various molecular -omics studies on permafrost microbial ecology and explore the relevance of these insights to our current understanding of the dynamics of permafrost loss due to climate change

    Short-Term Antibiotic Treatment Has Differing Long-Term Impacts on the Human Throat and Gut Microbiome

    Get PDF
    Antibiotic administration is the standard treatment for the bacterium Helicobacter pylori, the main causative agent of peptic ulcer disease and gastric cancer. However, the long-term consequences of this treatment on the human indigenous microbiota are relatively unexplored. Here we studied short- and long-term effects of clarithromycin and metronidazole treatment, a commonly used therapy regimen against H. pylori, on the indigenous microbiota in the throat and in the lower intestine. The bacterial compositions in samples collected over a four-year period were monitored by analyzing the 16S rRNA gene using 454-based pyrosequencing and terminal-restriction fragment length polymorphism (T-RFLP). While the microbial communities of untreated control subjects were relatively stable over time, dramatic shifts were observed one week after antibiotic treatment with reduced bacterial diversity in all treated subjects in both locations. While the microbiota of the different subjects responded uniquely to the antibiotic treatment some general trends could be observed; such as a dramatic decline in Actinobacteria in both throat and feces immediately after treatment. Although the diversity of the microbiota subsequently recovered to resemble the pre treatment states, the microbiota remained perturbed in some cases for up to four years post treatment. In addition, four years after treatment high levels of the macrolide resistance gene erm(B) were found, indicating that antibiotic resistance, once selected for, can persist for longer periods of time than previously recognized. This highlights the importance of a restrictive antibiotic usage in order to prevent subsequent treatment failure and potential spread of antibiotic resistance
    • …
    corecore