6,558 research outputs found
Effect of a surface tension imbalance on a partly submerged cylinder
We perform a static analysis of a circular cylinder that forms a barrier
between surfactant-laden and surfactant-free portions of a liquidgas
interface. In addition to determining the general implications of the balances
for forces and torques, we quantify how the imbalance
between the uniform surface tension
of the surfactant-free portion of the interface and the uniform surface tension
of the surfactant-laden portion of the interface influences the
load-bearing capacity of a hydrophobic cylinder. Moreover, we demonstrate that
the difference between surface tensions on either side of a cylinder with a
cross-section of arbitrary shape induces a horizontal force component
equal to in magnitude, when measured per unit length of the
cylinder. With an energetic argument, we show that this relation also applies
to rod-like barriers with cross-sections of variable shape. In addition, we
apply our analysis to amphiphilic Janus cylinders and we discuss practical
implications of our findings for Marangoni propulsion and surface pressure
measurements
Behavior of self-propelled acetone droplets in a Leidenfrost state on liquid substrates
It is demonstrated that non-coalescent droplets of acetone can be formed on
liquid substrates. The fluid flows around and in an acetone droplet hovering on
water are recorded to shed light on the mechanisms which might lead to
non-coalescence. For sufficiently low impact velocities, droplets undergo a
damped oscillation on the surface of the liquid substrate but at higher
velocities clean bounce-off occurs. Comparisons of experimentally observed
static configurations of floating droplets to predictions from a theoretical
model for a small non-wetting rigid sphere resting on a liquid substrate are
made and a tentative strategy for determining the thickness of the vapor layer
under a small droplet on a liquid is proposed. This strategy is based on the
notion of effective surface tension. The droplets show self-propulsion in
straight line trajectories in a manner which can be ascribed to a Marangoni
effect. Surprisingly, self-propelled droplets can become immersed beneath the
undisturbed water surface. This phenomenon is reasoned to be drag-inducing and
might provide a basis for refining observations in previous work
Scaling up antiretroviral therapy in Malawi-implications for managing other chronic diseases in resource-limited countries.
The national scale-up of antiretroviral therapy (ART) in Malawi is based on the public health approach, with principles and practices borrowed from the successful DOTS (directly observed treatment, short course) tuberculosis control framework. The key principles include political commitment, free care, and standardized systems for case finding, treatment, recording and reporting, and drug procurement. Scale-up of ART started in June 2004, and by December 2008, 223,437 patients were registered for treatment within a health system that is severely underresourced. The Malawi model for delivering lifelong ART can be adapted and used for managing patients with chronic noncommunicable diseases, the burden of which is already high and continues to grow in low-income and middle-income countries. This article discusses how the principles behind the successful Malawi model of ART delivery can be applied to the management of other chronic diseases in resource-limited settings and how this paradigm can be used for health systems strengthening
Een Gallo-Romeins grafveld te Maaseik 1
Hollevoet, Yan
Enhanced transmission versus localization of a light pulse by a subwavelength metal slit: Can the pulse have both characteristics?
The existence of resonant enhanced transmission and collimation of light
waves by subwavelength slits in metal films [for example, see T.W. Ebbesen et
al., Nature (London) 391, 667 (1998) and H.J. Lezec et al., Science, 297, 820
(2002)] leads to the basic question: Can a light be enhanced and simultaneously
localized in space and time by a subwavelength slit? To address this question,
the spatial distribution of the energy flux of an ultrashort (femtosecond)
wave-packet diffracted by a subwavelength (nanometer-size) slit was analyzed by
using the conventional approach based on the Neerhoff and Mur solution of
Maxwell's equations. The results show that a light can be enhanced by orders of
magnitude and simultaneously localized in the near-field diffraction zone at
the nm- and fs-scales. Possible applications in nanophotonics are discussed.Comment: 5 figure
Fusion-Fission of 16O+197Au at Sub-Barrier Energies
The recent discovery of heavy-ion fusion hindrance at far sub-barrier
energies has focused much attention on both experimental and theoretical
studies of this phenomenon. Most of the experimental evidence comes from
medium-heavy systems such as Ni+Ni to Zr+Zr, for which the compound system
decays primarily by charged-particle evaporation. In order to study heavier
systems, it is, however, necessary to measure also the fraction of the decay
that goes into fission fragments. In the present work we have, therefore,
measured the fission cross section of 16O+197Au down to unprecedented far
sub-barrier energies using a large position sensitive PPAC placed at backward
angles. The preliminary cross sections will be discussed and compared to
earlier studies at near-barrier energies. No conclusive evidence for
sub-barrier hindrance was found, probably because the measurements were not
extended to sufficiently low energies.Comment: Fusion06 - Intl. Conf. on Reaction Mechanisms and Nuclear Structure
at the Coulomb Barrier, San Servolo, Venezia, Italy, March 19-223, 2006 5
pages, 4 figure
A guide to chemokines and their receptors
The chemokines (or chemotactic cytokines) are a large family of small, secreted proteins that signal through cell surface G‐protein coupled heptahelical chemokine receptors. They are best known for their ability to stimulate the migration of cells, most notably white blood cells (leukocytes). Consequently, chemokines play a central role in the development and homeostasis of the immune system, and are involved in all protective or destructive immune and inflammatory responses. Classically viewed as inducers of directed chemotactic migration, it is now clear that chemokines can stimulate a variety of other types of directed and undirected migratory behaviour, such as haptotaxis, chemokinesis, and haptokinesis, in addition to inducing cell arrest or adhesion. However, chemokine receptors on leukocytes can do more than just direct migration, and these molecules can also be expressed on, and regulate the biology of, many non‐leukocytic cell types. Chemokines are profoundly affected by post‐translational modification, by interaction with the extracellular matrix (ECM), and by binding to heptahelical ‘atypical’ chemokine receptors that regulate chemokine localisation and abundance. This guide gives a broad overview of the chemokine and chemokine receptor families; summarises the complex physical interactions that occur in the chemokine network; and, using specific examples, discusses general principles of chemokine function, focussing particularly on their ability to direct leukocyte migration
Lifetime measurements of Triaxial Strongly Deformed bands in Tm
With the Doppler Shift Attenuation Method, quadrupole transition moments,
, were determined for the two recently proposed Triaxial Strongly Deformed
(TSD) bands in Tm. The measured moments indicate that the
deformation of these bands is larger than that of the yrast, signature
partners. However, the measured values are smaller than those predicted by
theory. This observation appears to be valid for TSD bands in several nuclei of
the regionComment: 8 pages, 5 figures. Submitted to Physical Review
- …