4 research outputs found

    In vitro activity profiling of Cumyl-PEGACLONE variants at the CB1 receptor : fluorination versus isomer exploration

    Get PDF
    Synthetic cannabinoid receptor agonists (SCRAs) are one of the largest groups of new psychoactive substances monitored in Europe. SCRAs are known to typically exert higher cannabinoid activity than tetrahydrocannabinol from cannabis, thereby entailing a greater health risk. Both Cumyl-PEGACLONE and 5F-Cumyl-PEGACLONE were not controlled by the national legislation upon their first detection in Germany in 2016 and 2017, respectively, and have been linked to several fatalities. In this study, the CB1 receptor activity of these compounds, together with two newly synthesized structural isomers (Cumyl-PEGACLONE ethylbenzyl isomer and npropylphenyl isomer), was assessed using two different in vitro receptor-proximal bioassays, monitoring the recruitment of either β-arrestin2 (β-arr2) or a modified G protein (mini-Gαi) to the activated CB1 receptor. In terms of both potency and relative efficacy, Cumyl-PEGACLONE and 5F-Cumyl-PEGACLONE were found to exert strong CB1 activation, with sub-nanomolar EC50 values and efficacy values exceeding those of the reference agonist JWH-018 threefold (β-arr2 assay) or almost twofold (mini-Gαi assay). The ethylbenzyl and n-propylphenyl isomers exhibited a strongly reduced CB1 activity (EC50 values >100 nM; efficacy <40% relative to JWH-018), which is hypothesized to originate from steric hindrance in the ligand-binding pocket. None of the evaluated compounds exhibited significant biased agonism. In conclusion, the functional assays applied here allowed us to demonstrate that 5-fluorination of Cumyl-PEGACLONE is not linked to an intrinsically higher CB1 activation potential and that the ethylbenzyl and n-propylphenyl isomers yield a strongly reduced CB1 activation

    Sensing an oxygen sensor : development and application of activity-based assays directly monitoring HIF heterodimerization

    No full text
    Conventionally, hypoxia-inducible factor (HIF) activation by prolyl hydroxylase domain enzyme (PHD) inhibition is monitored by gene reporter assays. The principle relies on the monitoring of an upstream event (HIF stabilization) by the downstream transcriptional activity. Here, we developed a novel approach to directly sense HIF activation by monitoring the heterodimerization of the HIF alpha/HIF beta subunits, constituting the functional HIF transcription factor. Two live cell-based biosensor assay setups were designed, utilizing functional complementation of split-nanoluciferase as a tool to measure HIF alpha/HIF beta protein-protein interaction resulting from the stabilization of HIF1 alpha or HIF2 alpha. The assay setup in a 96-well format was optimized for a duration of 2 h, and a HEK293T transfection protocol was introduced for the optimal configuration of HIF alpha/HIF beta-fusion proteins. These new bioassays outperformed hypoxia response element-based gene reporter assay, the current state-of-the-art assay, in terms of sensitivity. Applicability was demonstrated using a panel of PHD inhibitors, including roxadustat, molidustat, daprodustat, desidustat, vadadustat, and FG-2216, for which concentration-response curves were generated, allowing for the derivation of potency (EC50) and efficacy (E-max) data. The broad applicability of the biosensors was established via applying hypoxia mimetic CoCl2, iron chelator desferrioxamine, proteasome inhibitor MG-132, and 2-OG mimetic dimethyloxalylglycine on the assays, indicating concentration-dependent effects

    Linking in vitro and ex vivo CB1 activity with serum concentrations and clinical features in 5F-MDMB-PICA users to better understand SCRAs and their metabolites

    No full text
    Synthetic cannabinoid receptor agonists (SCRAs) pose a danger to public health. This study focused on individuals experiencing recreational drug toxicity who had used 5F-MDMB-PICA. Patient records were evaluated regarding vital signs, Glasgow Coma Scale (GCS) and clinical features. Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) confirmed and quantified the presence of 5F-MDMB-PICA (and/or metabolites) as the only SCRA present in the serum of 71 patients. Cannabinoid activity was evaluated by a cannabinoid receptor (CB1) bioassay, to assess the relationship between serum concentrations and ex vivo human CB1 activation potential. Furthermore, a link with the clinical presentation was appraised. 5F-MDMB-PICA and five metabolites were pharmacologically profiled in vitro, revealing theoretically possible contributions of two active in vivo metabolites to overall cannabinoid activity. Serum concentrations of 5F-MDMB-PICA were correlated to the ex vivo cannabinoid activity, revealing a sigmoidal relationship. The latter could also be predicted based on pharmacological characterization of 5F-MDMB-PICA and its metabolites and an in-depth investigation of the bioassay outcome. Clinically, the GCS showed a significant trend (decrease) with increasing ex vivo cannabinoid activity. This is the first study to evaluate possible toxic effects of 5F-MDMB-PICA in a unique large patient cohort. It allows a better understanding of 5F-MDMB-PICA and metabolites in humans, suggesting a negligible contribution by 5F-MDMB-PICA metabolites to the overall cannabinoid activity in serum. Additionally, this work shows that in vitro pharmacological characterization allows close prediction of an individual's ex vivo CB1 activity, the latter showing a relationship with the level of consciousness

    Machine learning to assist in large-scale, activity-based synthetic cannabinoid receptor agonist screening of serum samples

    No full text
    Background Synthetic cannabinoid receptor agonists (SCRAs) are amongst the largest groups of new psychoactive substances (NPS). Their often high activity at the CB1 cannabinoid receptor frequently results in intoxication, imposing serious health risks. Hence, continuous monitoring of these compounds is important, but challenged by the rapid emergence of novel analogues that are missed by traditional targeted detection strategies. We addressed this need by performing an activity-based, universal screening on a large set (n = 968) of serum samples from patients presenting to the emergency department with acute recreational drug or NPS toxicity. Methods We assessed the performance of an activity-based method in detecting newly circulating SCRAs compared with liquid chromatography coupled to high-resolution mass spectrometry. Additionally, we developed and evaluated machine learning models to reduce the screening workload by automating interpretation of the activity-based screening output. Results Activity-based screening delivered outstanding performance, with a sensitivity of 94.6% and a specificity of 98.5%. Furthermore, the developed machine learning models allowed accurate distinction between positive and negative patient samples in an automatic manner, closely matching the manual scoring of samples. The performance of the model depended on the predefined threshold, e.g., at a threshold of 0.055, sensitivity and specificity were both 94.0%. Conclusion The activity-based bioassay is an ideal candidate for untargeted screening of novel SCRAs. The combination of this universal screening assay and a machine learning approach for automated sample scoring is a promising complement to conventional analytical methods in clinical practice
    corecore