224 research outputs found

    Description of superdeformed nuclei in the interacting boson model

    Full text link
    The interacting boson model is extended to describe the spectroscopy of superdeformed bands. Microscopic structure of the model in the second minimum is discussed and superdeformed bosons are introduced as the new building blocks. Solutions of a quadrupole Hamiltonian are implemented through the 1/N1/N expansion method. Effects of the quadrupole parameters on dynamic moment of inertia and electric quadrupole transition rates are discussed and the results are used in a description of superdeformed bands in the Hg-Pb and Gd-Dy regions.Comment: 18 pages revtex, 9 figures available upon reques

    Crossing of shears bands in 197Pb: B(M1) values and semiclassical description

    Get PDF
    Subpicosecond lifetimes of states in shears band 1 in 97Pb were measured by means of the recoil distance method employing Gammasphere and the New Yale Plunger Device. The extracted reduced matrix elements, B(M1), show a clear sensitivity to the crossing of different shears configurations reflecting the closing and reopening of the shears blades. The energies and B(M1) values in the band crossing region are successfully described in the framework of the semiclassical model of the shears bands. The relevance of core rotation contributions are shown. The results point to the existence of shears states with an angular momentum coupling angle larger than 90°

    Nature of yrast excitations near N=40: Level structure of 67 Ni

    Get PDF
    Excited states in 67Ni were populated in deep-inelastic reactions of a 64Ni beam at 430 MeV on a thick 238U target. A level scheme built on the previously known 13-μs isomer has been delineated up to an excitation energy of 5.3 MeV and a tentative spin and parity of (21/2-). Shell model calculations have been carried out using two effective interactions in the f5/2pg9/2 model space with a 56Ni core. Satisfactory agreement between experiment and theory is achieved for the measured transition energies and branching ratios. The calculations indicate that the yrast states are associated with rather complex configurations, herewith demonstrating the relative weakness of the N=40 subshell gap and the importance of multi-particle-hole excitations involving the g9/2 neutron orbital

    Levels above the 19/2- isomer in Cu71: Persistence of the N=40 neutron shell gap

    Get PDF
    Two prompt γ rays of energies 2020 and 554 keV were observed in coincidence with delayed transitions depopulating the 19/2- isomer in the Z=29, N=42 Cu71 nucleus. The newly identified transitions are proposed to deexcite the 4776- and 5330-keV levels above the 19/2- isomer. Based on the comparison with the low-lying positive-parity states observed in the Z=42, N=50 Mo92 nucleus, spin and parity 23/2- are proposed for the 4776-keV level in Cu71. The high-energy, 2020-keV transition is interpreted as arising from the breaking of the N=40 neutron core. Shell-model calculations with a Ni56 core reproduce the (23/2-)→(19/2-) gap well, suggesting that the 23/2- state is dominated by πp3/2ν((fp)10(g9/2)4) configurations. The present result constitutes further evidence supporting the view that the N=40 subshell closure persists in Cu71, herewith challenging recent suggestions that the coupling of two or more proton or neutron quasiparticles induces a large polarization of the Ni68 core

    Isospin symmetry in the odd-odd mirror nuclei 44V/44Sc

    Get PDF
    Excited states in the N=Z-2 nucleus 44V have been observed for the first time. The states have been identified through particle-γ-γ coincidence relationships and comparison with analog states in the mirror nucleus 44Sc. Mirror energy differences have been extracted and compared to state-of-the-art shell-model calculations which include charge-symmetry-breaking forces. Observed decay pattern asymmetries between the mirror pair are discussed in terms of core excitations, electromagnetic spin-orbit effects and isospin mixing

    Population of positive-parity states in Sc53 through one-proton knockout

    Get PDF
    The one-proton knockout reaction Be9(Ti54,Sc53+γ)X at 72 MeV/nucleon has been measured. The location of the first 3/2- state at 2110(3) keV was confirmed, and new γ-ray transitions were observed at 1111(2), 1273(2), 1539(4), and 2495(5) keV. Large spectroscopic strength to excited states in Sc53 was found and attributed to the knockout of sd-shell protons

    Identification of the g9/2-proton bands in the neutron-rich Ga71,73,75,77 nuclei

    Get PDF
    Excited states in the odd-AGa71,73,75,77 nuclei have been populated in deep-inelastic reactions of a Ge76 beam at 530 MeV with a thick U238 target. High-spin sequences built upon the 9/2+, 5/2-, and 3/2- states were identified in all four isotopes. A comparison of the observed structures with the yrast positive-parity states in the neighboring even-even Zn cores indicates that the newly identified levels may be regarded as arising from the relatively weak coupling of the odd proton to the core states. However, significant contributions from broken pairs are expected to be present in this region of excitation energy. The present data set also provides clarification of previously reported decay paths of the low-energy levels in Ga71,73,75,77
    corecore