13,365 research outputs found

    Differential thermal analysis and solution growth of intermetallic compounds

    Get PDF
    To obtain single crystals by solution growth, an exposed primary solidification surface in the appropriate, but often unknown, equilibrium alloy phase diagram is required. Furthermore, an appropriate crucible material is needed, necessary to hold the molten alloy during growth, without being attacked by it. Recently, we have used the comparison of realistic simulations with experimental differential thermal analysis (DTA) curves to address both these problems. We have found: 1) complex DTA curves can be interpreted to determine an appropriate heat treatment and starting composition for solution growth, without having to determine the underlying phase diagrams in detail. 2) DTA can facilitate identification of appropriate crucible materials. DTA can thus be used to make the procedure to obtain single crystals of a desired phase by solution growth more efficient. We will use some of the systems for which we have recently obtained single-crystalline samples using the combination of DTA and solution growth as examples. These systems are TbAl, Pr7_7Ni2_2Si5_5, and YMn4_4Al8_8.Comment: 17 pages, 8 figure

    Very Long Baseline Interferometry Measured Proper Motion and Parallax of the γ\gamma-ray Millisecond Pulsar PSR J0218+4232

    Full text link
    PSR J0218++4232 is a millisecond pulsar (MSP) with a flux density \sim 0.9 mJy at 1.4 GHz. It is very bright in the high-energy X-ray and γ\gamma-ray domains. We conducted an astrometric program using the European VLBI Network (EVN) at 1.6 GHz to measure its proper motion and parallax. A model-independent distance would also help constrain its γ\gamma-ray luminosity. We achieved a detection of signal-to-noise ratio S/N > 37 for the weak pulsar in all five epochs. Using an extragalactic radio source lying 20 arcmin away from the pulsar, we estimate the pulsar's proper motion to be μαcosδ=5.35±0.05\mu_{\alpha}\cos\delta=5.35\pm0.05 mas yr1^{-1} and μδ=3.74±0.12\mu_{\delta}=-3.74\pm 0.12 mas yr1^{-1}, and a parallax of π=0.16±0.09\pi=0.16\pm0.09 mas. The very long baseline interferometry (VLBI) proper motion has significantly improved upon the estimates from long-term pulsar timing observations. The VLBI parallax provides the first model-independent distance constraints: d=6.32.3+8.0d=6.3^{+8.0}_{-2.3} kpc, with a corresponding 3σ3\sigma lower-limit of d=2.3d=2.3 kpc. This is the first pulsar trigonometric parallax measurement based solely on EVN observations. Using the derived distance, we believe that PSR J0218++4232 is the most energetic γ\gamma-ray MSP known to date. The luminosity based on even our 3σ\sigma lower-limit distance is high enough to pose challenges to the conventional outer gap and slot gap models.Comment: 5 pages, 2 figures, 2 tables; published in the Astrophysical Journal Letters on 2014 Feb. 1

    Charge Transport Properties of a Metal-free Phthalocyanine Discotic Liquid Crystal

    Full text link
    Discotic liquid crystals can self-align to form one-dimensional semiconducting wires, many tens of microns long. In this letter, we describe the preparation of semiconducting films where the stacking direction of the disc-like molecules is perpendicular to the substrate surface. We present measurements of the charge carrier mobility, applying temperature-dependent time-of-flight transient photoconductivity, space-charge limited current measurements, and field-effect mobility measurements. We provide experimental verification of the highly anisotropic nature of semiconducting films of discotic liquid crystals, with charge carrier mobilities of up to 2.8x103^{-3}cm2^2/Vs. These properties make discotics an interesting choice for applications such as organic photovoltaics.Comment: 5 pages, 5 figure

    Microarcsecond VLBI pulsar astrometry with PSRπ\pi II. parallax distances for 57 pulsars

    Full text link
    We present the results of PSRπ\pi, a large astrometric project targeting radio pulsars using the Very Long Baseline Array (VLBA). From our astrometric database of 60 pulsars, we have obtained parallax-based distance measurements for all but 3, with a parallax precision of typically 40 μ\muas and approaching 10 μ\muas in the best cases. Our full sample doubles the number of radio pulsars with a reliable (\gtrsim5σ\sigma) model-independent distance constraint. Importantly, many of the newly measured pulsars are well outside the solar neighbourhood, and so PSRπ\pi brings a near-tenfold increase in the number of pulsars with a reliable model-independent distance at d>2d>2 kpc. Using our sample along with previously published results, we show that even the most recent models of the Galactic electron density distribution model contain significant shortcomings, particularly at high Galactic latitudes. When comparing our results to pulsar timing, two of the four millisecond pulsars in our sample exhibit significant discrepancies in the estimates of proper motion obtained by at least one pulsar timing array. With additional VLBI observations to improve the absolute positional accuracy of our reference sources and an expansion of the number of millisecond pulsars, we will be able to extend the comparison of proper motion discrepancies to a larger sample of pulsar reference positions, which will provide a much more sensitive test of the applicability of the solar system ephemerides used for pulsar timing. Finally, we use our large sample to estimate the typical accuracy attainable for differential astrometry with the VLBA when observing pulsars, showing that for sufficiently bright targets observed 8 times over 18 months, a parallax uncertainty of 4 μ\muas per arcminute of separation between the pulsar and calibrator can be expected.Comment: updated to version accepted by ApJ: 30 pages, 20 figures, 9 table

    Determination of the magnetic structure of Yb3Pt4: a k=0 local-moment antiferromagnet

    Full text link
    We have used neutron diffraction measurements to study the zero-field magnetic structure of the intermetallic compound Yb3Pt4, which was earlier found to order antiferromagnetically at the Neel temperature TN=2.4 K, and displays a field-driven quantum critical point at 1.6 T. In Yb3Pt4, the Yb moments sit on a single low-symmetry site in the rhombohedral lattice with space group R-3. The Yb ions form octahedra with edges that are twisted with respect to the hexagonal unit cell, a twisting that results in every Yb ion having exactly one Yb nearest neighbor. Below TN, we found new diffracted intensity due to a k=0 magnetic structure. This magnetic structure was compared to all symmetry-allowed magnetic structures, and was subsequently refined. The best fitting magnetic structure model is antiferromagnetic, and involves pairs of Yb nearest neighbors on which the moments point almost exactly towards each other. This structure has moment components within the ab-plane as well as parallel to the c-axis, although the easy magnetization direction lies in the ab-plane. Our magnetization results suggest that besides the crystal-electric field anisotropy, anisotropic exchange favoring alignment along the c-axis is responsible for the overall direction of the ordered moments. The magnitude of the ordered Yb moments in Yb3Pt4 is 0.81 uB/Yb at 1.4 K. The analysis of the bulk properties, the size of the ordered moment, and the observation of well-defined crystal-field levels argue that the Yb moments are spatially localized in zero field.Comment: 11 pages, 12 figure, submitted to Phys. Rev.

    Toward an ecological aesthetics: music as emergence

    Get PDF
    In this article we intend to suggest some ecological based principles to support the possibility of develop an ecological aesthetics. We consider that an ecological aesthetics is founded in concepts as “direct perception”, “acquisition of affordances and invariants”, “embodied embedded perception” and so on. Here we will purpose that can be possible explain especially soundscape music perception in terms of direct perception, working with perception of first hand (in a Gibsonian sense). We will present notions as embedded sound, detection of sonic affordances and invariants, and at the end we purpose an experience with perception/action paradigm to make soundscape music as emergence of a self-organized system

    Multifractal current distribution in random diode networks

    Full text link
    Recently it has been shown analytically that electric currents in a random diode network are distributed in a multifractal manner [O. Stenull and H. K. Janssen, Europhys. Lett. 55, 691 (2001)]. In the present work we investigate the multifractal properties of a random diode network at the critical point by numerical simulations. We analyze the currents running on a directed percolation cluster and confirm the field-theoretic predictions for the scaling behavior of moments of the current distribution. It is pointed out that a random diode network is a particularly good candidate for a possible experimental realization of directed percolation.Comment: RevTeX, 4 pages, 5 eps figure
    corecore