13,641 research outputs found

    Charge Transport Properties of a Metal-free Phthalocyanine Discotic Liquid Crystal

    Full text link
    Discotic liquid crystals can self-align to form one-dimensional semiconducting wires, many tens of microns long. In this letter, we describe the preparation of semiconducting films where the stacking direction of the disc-like molecules is perpendicular to the substrate surface. We present measurements of the charge carrier mobility, applying temperature-dependent time-of-flight transient photoconductivity, space-charge limited current measurements, and field-effect mobility measurements. We provide experimental verification of the highly anisotropic nature of semiconducting films of discotic liquid crystals, with charge carrier mobilities of up to 2.8x10−3^{-3}cm2^2/Vs. These properties make discotics an interesting choice for applications such as organic photovoltaics.Comment: 5 pages, 5 figure

    Multifractality: generic property of eigenstates of 2D disordered metals.

    Full text link
    The distribution function of local amplitudes of eigenstates of a two-dimensional disordered metal is calculated. Although the distribution of comparatively small amplitudes is governed by laws similar to those known from the random matrix theory, its decay at larger amplitudes is non-universal and much slower. This leads to the multifractal behavior of inverse participation numbers at any disorder. From the formal point of view, the multifractality originates from non-trivial saddle-point solutions of supersymmetric σ\sigma-model used in calculations.Comment: 4 two-column pages, no figures, submitted to PRL

    Determination of hadronic partial widths for scalar-isoscalar resonances f0(980), f0(1300), f0(1500), f_0(1750) and the broad state f0(1530^{+90}_{-250})

    Get PDF
    In the article of V.V. Anisovich et al., Yad. Fiz. 63, 1489 (2000), the K-matrix solutions for the wave IJ^{PC}=00^{++} were obtained in the mass region 450 - 1900 MeV where four resonances f0(980), f0(1300), f0(1500), f0(1750) and the broad state f0(1530^{+90}_{-250}) are located. Based on these solutions, we determine partial widths for scalar-isoscalar states decaying into the channels pi-pi, K-anti K, eta-eta, eta-eta', pi-pi-pi-pi and corresponding decay couplings.Comment: Some typos were correcte

    Statistics of delay times in mesoscopic systems as a manifestation of eigenfunction fluctuations

    Full text link
    We reveal a general explicit relation between the statistics of delay times in one-channel reflection from a mesoscopic sample of any spatial dimension and the statistics of the eigenfunction intensities in its closed counterpart. This opens a possibility to use experimentally measurable delay times as a sensitive probe of eigenfunction fluctuations. For the particular case of quasi-one dimensional geometry of the sample we use an alternative technique to derive the probability density of partial delay times for any number of open channels.Comment: 12 pages; published version with updated reference

    Global Persistence in Directed Percolation

    Full text link
    We consider a directed percolation process at its critical point. The probability that the deviation of the global order parameter with respect to its average has not changed its sign between 0 and t decays with t as a power law. In space dimensions d<4 the global persistence exponent theta_p that characterizes this decay is theta_p=2 while for d<4 its value is increased to first order in epsilon = 4-d. Combining a method developed by Majumdar and Sire with renormalization group techniques we compute the correction to theta_p to first order in epsilon. The global persistence exponent is found to be a new and independent exponent. We finally compare our results with existing simulations.Comment: 15 pages, LaTeX, one .eps figure include

    Spontaneous Symmetry Breaking in Directed Percolation with Many Colors: Differentiation of Species in the Gribov Process

    Full text link
    A general field theoretic model of directed percolation with many colors that is equivalent to a population model (Gribov process) with many species near their extinction thresholds is presented. It is shown that the multicritical behavior is always described by the well known exponents of Reggeon field theory. In addition this universal model shows an instability that leads in general to a total asymmetry between each pair of species of a cooperative society.Comment: 4 pages, 2 Postscript figures, uses multicol.sty, submitte

    A graviton propagator for inflation

    Full text link
    We construct the scalar and graviton propagator in quasi de Sitter space up to first order in the slow roll parameter ϵ≡−H˙/H2\epsilon\equiv -\dot{H}/H^2. After a rescaling, the propagators are similar to those in de Sitter space with an ϵ\epsilon correction to the effective mass. The limit ϵ→0\epsilon\to 0 corresponds to the E(3) vacuum that breaks de Sitter symmetry, but does not break spatial isotropy and homogeneity. The new propagators allow for a self-consistent, dynamical study of quantum back-reaction effects during inflation.Comment: 23 page

    Unveiling the anatomy of mode-coupling theory

    Full text link
    The mode-coupling theory of the glass transition (MCT) has been at the forefront of fundamental glass research for decades, yet the theory's underlying approximations remain obscure. Here we quantify and critically assess the effect of each MCT approximation separately. Using Brownian dynamics simulations, we compute the memory kernel predicted by MCT after each approximation in its derivation, and compare it with the exact one. We find that some often-criticized approximations are in fact very accurate, while the opposite is true for others, providing new guiding cues for further theory development
    • …
    corecore