3,740 research outputs found

    Challenges in Cardiac Muscle Physiology

    Get PDF

    Prospects for high-resolution microwave spectroscopy of methanol in a Stark-deflected molecular beam

    Full text link
    Recently, the extremely sensitive torsion-rotation transitions in methanol have been used to set a tight constraint on a possible variation of the proton-to-electron mass ratio over cosmological time scales. In order to improve this constraint, laboratory data of increased accuracy will be required. Here, we explore the possibility for performing high-resolution spectroscopy on methanol in a Stark-deflected molecular beam. We have calculated the Stark shift of the lower rotational levels in the ground torsion-vibrational state of CH3OH and CD3OH molecules, and have used this to simulate trajectories through a typical molecular beam resonance setup. Furthermore, we have determined the efficiency of non-resonant multi-photon ionization of methanol molecules using a femtosecond laser pulse. The described setup is in principle suited to measure microwave transitions in CH3OH at an accuracy below 10^{-8}

    Contractile Strength during Variable Heart Duration Is Species and Preload Dependent

    Get PDF
    We investigate the effect of beat-to-beat variability on cardiac contractility. Cardiac trabeculae were isolated from the right ventricle of rabbits and beagle dogs and stimulated to isometrically contract, alternating between fixed steady state versus variable interbeat intervals. Trabeculae were stimulated at physiologically relevant frequencies for each species (dog 1 and 4 Hz; rabbit 2 and 4 Hz) intercalating fixed periods with 40% variability. A subset of the trabeculae (at 90% of optimal length) was stretched prior to stimulation between 5 and 13% and stimulated at the same frequencies with a fixed versus 40% variation. Fixed rate response at the same base frequency was measured before and after each variable period and the average force reported. In canine preparations no change in force was observed as a result of the imposed variability in beat-to-beat duration. In the rabbit, we observed a nonsignificant decrease in force between fixed and variable pacing at both 2 and 4 Hz (n = 8) when 40% variability was introduced. When a 5% and 13% stretch was applied, the correlation coefficient sharply increased, indicating a more prominent impact of the prebeat duration on the following cycle with higher preload

    Quality of group interaction, ethnic group composition, and individual mathematical learning gains

    Get PDF
    High-quality helping behavior is essential for effective peer interaction and learning. This study focused on ethnic group composition and the quality of group interaction as predictors of individual mathematics performance. Video-observations of 92 fifth-grade students working in groups balanced on mathematics performance level were analyzed. We expected a difference in the quality of interaction and test scores of native and non-native students. Multilevel analysis identified process regulation and giving answers as positive predictors of mathematics performance, whereas giving or applying explanations contributed negatively. Non-native students generally had lower achievement scores than native students. Non-native students working in ethnically heterogeneous groups performed better than did students working in homogenous groups. Homogeneous groups used more high-quality helping behaviors and engaged more often in task-oriented behavior. Heterogeneous groups engaged more often in low-quality helping behaviors. Working with native students may have been conducive to non-native students’ understanding of word problems in realistic mathematics education

    The PLAC1-homology region of the ZP domain is sufficient for protein polymerisation

    Get PDF
    BACKGROUND: Hundreds of extracellular proteins polymerise into filaments and matrices by using zona pellucida (ZP) domains. ZP domain proteins perform highly diverse functions, ranging from structural to receptorial, and mutations in their genes are responsible for a number of severe human diseases. Recently, PLAC1, Oosp1-3, Papillote and CG16798 proteins were identified that share sequence homology with the N-terminal half of the ZP domain (ZP-N), but not with its C-terminal half (ZP-C). The functional significance of this partial conservation is unknown. RESULTS: By exploiting a highly engineered bacterial strain, we expressed in soluble form the PLAC1-homology region of mammalian sperm receptor ZP3 as a fusion to maltose binding protein. Mass spectrometry showed that the 4 conserved Cys residues within the ZP-N moiety of the fusion protein adopt the same disulfide bond connectivity as in full-length native ZP3, indicating that it is correctly folded, and electron microscopy and biochemical analyses revealed that it assembles into filaments. CONCLUSION: These findings provide a function for PLAC1-like proteins and, by showing that ZP-N is a biologically active folding unit, prompt a re-evaluation of the architecture of the ZP domain and its polymers. Furthermore, they suggest that ZP-C might play a regulatory role in the assembly of ZP domain protein complexes

    Percolation Threshold, Fisher Exponent, and Shortest Path Exponent for 4 and 5 Dimensions

    Full text link
    We develop a method of constructing percolation clusters that allows us to build very large clusters using very little computer memory by limiting the maximum number of sites for which we maintain state information to a number of the order of the number of sites in the largest chemical shell of the cluster being created. The memory required to grow a cluster of mass s is of the order of sθs^\theta bytes where θ\theta ranges from 0.4 for 2-dimensional lattices to 0.5 for 6- (or higher)-dimensional lattices. We use this method to estimate dmind_{\scriptsize min}, the exponent relating the minimum path \ell to the Euclidean distance r, for 4D and 5D hypercubic lattices. Analyzing both site and bond percolation, we find dmin=1.607±0.005d_{\scriptsize min}=1.607\pm 0.005 (4D) and dmin=1.812±0.006d_{\scriptsize min}=1.812\pm 0.006 (5D). In order to determine dmind_{\scriptsize min} to high precision, and without bias, it was necessary to first find precise values for the percolation threshold, pcp_c: pc=0.196889±0.000003p_c=0.196889\pm 0.000003 (4D) and pc=0.14081±0.00001p_c=0.14081\pm 0.00001 (5D) for site and pc=0.160130±0.000003p_c=0.160130\pm 0.000003 (4D) and pc=0.118174±0.000004p_c=0.118174\pm 0.000004 (5D) for bond percolation. We also calculate the Fisher exponent, τ\tau, determined in the course of calculating the values of pcp_c: τ=2.313±0.003\tau=2.313\pm 0.003 (4D) and τ=2.412±0.004\tau=2.412\pm 0.004 (5D)

    Measurement of gamma p --> K+ Lambda and gamma p --> K+ Sigma0 at photon energies up to 2.6 GeV

    Full text link
    The reactions gamma p --> K+ Lambda and gamma p --> K+ Sigma0 were measured in the energy range from threshold up to a photon energy of 2.6 GeV. The data were taken with the SAPHIR detector at the electron stretcher facility, ELSA. Results on cross sections and hyperon polarizations are presented as a function of kaon production angle and photon energy. The total cross section for Lambda production rises steeply with energy close to threshold, whereas the Sigma0 cross section rises slowly to a maximum at about E_gamma = 1.45 GeV. Cross sections together with their angular decompositions into Legendre polynomials suggest contributions from resonance production for both reactions. In general, the induced polarization of Lambda has negative values in the kaon forward direction and positive values in the backward direction. The magnitude varies with energy. The polarization of Sigma0 follows a similar angular and energy dependence as that of Lambda, but with opposite sign.Comment: 21 pages, 25 figures, submitted to Eur. Phys. J.
    corecore