60 research outputs found

    Diagnostic Accuracy of Raman Spectroscopy Integrated With Polarized Light Microscopy for Calcium Pyrophosphate–Associated Arthritis

    Get PDF
    Objective: We studied the performance of integrated Raman polarized light microscopy (iRPolM) for the identification of calcium pyrophosphate (CPP)–associated arthritis (CPPD). Methods: This is a diagnostic accuracy study including 400 consecutive synovial fluid samples from a single hospital in the Netherlands. Accuracy measures were calculated against polarized light microscopy (PLM) and the 2023 American College of Rheumatology (ACR)/EULAR criteria set for CPPD. Results: The interrater reliability between iRPolM and the 2023 ACR/EULAR criteria set for CPPD was strong (κ = 0.88). The diagnostic performance of iRPolM compared to the 2023 ACR/EULAR criteria set was sensitivity 86.0% (95% confidence interval [CI] 73.3–94.2), specificity 99.1% (95% CI 97.5–99.8), positive likelihood ratio 100.33 (95% CI 32.3–311.3), negative likelihood ratio 0.14 (95% CI 0.07–0.28), positive predictive value 93.5% (95% CI 82.2–97.8), negative predictive value 98.0% (95% CI 82.2–97.8), and accuracy 97.5% (95% CI 95.5–98.8). We allowed rheumatologists to rate the certainty of their microscopic identification of CPP and found a large correspondence between iRPolM and a certain identification (κ = 0.87), whereas only 10% of the uncertain CPP identifications could be confirmed with iRPolM. We identified several novel particle types in synovial fluid analysis, including calcium carbonate crystals, deposited carotenoids, microplastics, and three types of Maltese cross birefringent objects. Conclusion: iRPolM can easily identify CPP crystals with a strong diagnostic performance. PLM alone is not specific enough to reliably resolve complicated cases, and the implementation of Raman spectroscopy in rheumatology practice can be of benefit to patients with suspected CPPD.</p

    Antibodies against angiotensin II receptor type 1 and endothelin A receptor are increased in COVID-19 patients

    Get PDF
    BackgroundIncreased titers of autoantibodies targeting the G-protein-coupled receptors angiotensin II type 1 receptor (AT1R) and endotelin-1 type A receptor (ETAR) are associated with severe coronavirus disease 2019 (COVID-19) infection. The aim of this study was to determine whether 1) these antibodies are specifically related to COVID-19 disease pathogenesis or increased during any severe respiratory illness, 2) if they are formed during illness, and 3) if they correlate with inflammatory markers or long-term symptoms.MethodsAntibodies against AT1R, ETAR, and antinuclear antibodies (ANAs) were measured in n=40 prospectively enrolled COVID-19 patients and n=207 COVID-19 patients included in a biobank. Clinical and laboratory findings were prospectively and retrospectively assessed in both cohorts, and results were combined for analysis. The presence of auto-antibodies against AT1R or ETAR in peripheral blood was compared between hospitalized patients with COVID-19 and controls (n=39). Additionally, AT1R and ETAR titers were compared between patients with an unfavorable disease course, defined as intensive care admission and/or death during hospital admission (n=121), to those with a favorable disease course (n=126). A subset of intubated patients with severe COVID-19 were compared to intubated patients with acute respiratory distress syndrome (ARDS) due to any other cause.ResultsSignificantly increased AT1R and ETAR antibody titers were found in COVID-19 patients compared to controls, while titers were equal between favorable and unfavorable COVID-19 disease course groups. On ICU, intubated patients with COVID-19 had significantly increased AT1R and ETAR titers compared to patients with ARDS due to any other cause. The titers did not correlate with baseline inflammatory markers during admission or with diffusion capacity, cognitive impairment, or fatigue measured at 3 months follow-up.ConclusionsIn patients hospitalized for COVID-19, antibodies against AT1R and ETAR are increased compared to controls and patients with ARDS due to other causes than COVID-19. The baseline antibody titers do not correlate with inflammatory markers or long-term symptoms in this study

    Antibodies against angiotensin II receptor type 1 and endothelin A receptor are increased in COVID-19 patients

    Get PDF
    Background: Increased titers of autoantibodies targeting the G-protein-coupled receptors angiotensin II type 1 receptor (AT1R) and endotelin-1 type A receptor (ETAR) are associated with severe coronavirus disease 2019 (COVID-19) infection. The aim of this study was to determine whether 1) these antibodies are specifically related to COVID-19 disease pathogenesis or increased during any severe respiratory illness, 2) if they are formed during illness, and 3) if they correlate with inflammatory markers or long-term symptoms. Methods: Antibodies against AT1R, ETAR, and antinuclear antibodies (ANAs) were measured in n=40 prospectively enrolled COVID-19 patients and n=207 COVID-19 patients included in a biobank. Clinical and laboratory findings were prospectively and retrospectively assessed in both cohorts, and results were combined for analysis. The presence of auto-antibodies against AT1R or ETAR in peripheral blood was compared between hospitalized patients with COVID-19 and controls (n=39). Additionally, AT1R and ETAR titers were compared between patients with an unfavorable disease course, defined as intensive care admission and/or death during hospital admission (n=121), to those with a favorable disease course (n=126). A subset of intubated patients with severe COVID-19 were compared to intubated patients with acute respiratory distress syndrome (ARDS) due to any other cause. Results: Significantly increased AT1R and ETAR antibody titers were found in COVID-19 patients compared to controls, while titers were equal between favorable and unfavorable COVID-19 disease course groups. On ICU, intubated patients with COVID-19 had significantly increased AT1R and ETAR titers compared to patients with ARDS due to any other cause. The titers did not correlate with baseline inflammatory markers during admission or with diffusion capacity, cognitive impairment, or fatigue measured at 3 months follow-up. Conclusions: In patients hospitalized for COVID-19, antibodies against AT1R and ETAR are increased compared to controls and patients with ARDS due to other causes than COVID-19. The baseline antibody titers do not correlate with inflammatory markers or long-term symptoms in this study.</p

    Analyses of abdominal adiposity and metabolic syndrome as risk factors for respiratory distress in COVID-19

    Get PDF
    Background Several characteristics of the metabolic syndrome, such as obesity and hypertension, have emerged as risk factors for a poor clinical outcome in COVID-19. However, most reports lack data on the metabolic syndrome itself. This study investigated prospectively the relationship between respiratory deterioration and the presence of metabolic syndrome or abdominal adiposity in patients with COVID-19. Methods A prospective observational cohort study analysing patients with respiratory symptoms who presented at a local emergency department in the Netherlands. The influence of abdominal adiposity - assessed by an increased waist-hip ratio - and metabolic syndrome on respiratory deterioration and the length of hospital stay were analysed with multivariable logistic regressions and Kaplan-Meier analyses. Results In total, 166 patients were analysed, of whom 86 (52%) tested positive for COVID-19. The prevalence of metabolic syndrome did not differ between patients with COVID-19 with and without the need for intubation or level of supportive care (37.5% vs 48.4%, p=0.338). In contrast, abdominal adiposity is an independent risk factor for respiratory distress in COVID-19, adjusted for metabolic syndrome, age, gender and BMI (OR 1.11, 95% CI 1.02 to 1.20, p=0.014). Conclusion This study shows that abdominal adiposity, and not the presence of metabolic syndrome, is associated with clinical deterioration in COVID-19. This prospective study provides further insight into the risk stratification of patients with COVID-19 based on a simple measurement as the waist and hip circumference

    Safety and Outcome of High-Flow Nasal Oxygen Therapy Outside ICU Setting in Hypoxemic Patients With COVID-19∗

    Get PDF
    OBJECTIVE: High-flow nasal oxygen (HFNO) therapy is frequently applied outside ICU setting in hypoxemic patients with COVID-19. However, safety concerns limit more widespread use. We aimed to assess the safety and clinical outcomes of initiation of HFNO therapy in COVID-19 on non-ICU wards. DESIGN: Prospective observational multicenter pragmatic study. SETTING: Respiratory wards and ICUs of 10 hospitals in The Netherlands. PATIENTS: Adult patients treated with HFNO for COVID-19-associated hypoxemia between December 2020 and July 2021 were included. Patients with treatment limitations were excluded from this analysis. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Outcomes included intubation and mortality rate, duration of hospital and ICU stay, severity of respiratory failure, and complications. Using propensity-matched analysis, we compared patients who initiated HFNO on the wards versus those in ICU. Six hundred eight patients were included, of whom 379 started HFNO on the ward and 229 in the ICU. The intubation rate in the matched cohort (n = 214 patients) was 53% and 60% in ward and ICU starters, respectively (p = 0.41). Mortality rates were comparable between groups (28-d [8% vs 13%], p = 0.28). ICU-free days were significantly higher in ward starters (21 vs 17 d, p &lt; 0.001). No patient died before endotracheal intubation, and the severity of respiratory failure surrounding invasive ventilation and clinical outcomes did not differ between intubated ward and ICU starters (respiratory rate-oxygenation index 3.20 vs 3.38; Pao2:Fio2ratio 65 vs 64 mm Hg; prone positioning after intubation 81 vs 78%; mortality rate 17 vs 25% and ventilator-free days at 28 d 15 vs 13 d, all p values &gt; 0.05). CONCLUSIONS: In this large cohort of hypoxemic patients with COVID-19, initiation of HFNO outside the ICU was safe, and clinical outcomes were similar to initiation in the ICU. Furthermore, the initiation of HFNO on wards saved time in ICU without excess mortality or complicated course. Our results indicate that HFNO initiation outside ICU should be further explored in other hypoxemic diseases and clinical settings aiming to preserve ICU capacity and healthcare costs.</p

    Multiplicative interaction of functional inflammasome genetic variants in determining the risk of gout

    Get PDF
    Introduction: The acute gout flare results from a localised self-limiting innate immune response to monosodium urate (MSU) crystals deposited in joints in hyperuricaemic individuals. Activation of the caspase recruitment domain-containing protein 8 (CARD8) NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome by MSU crystals and production of mature interleukin-1 beta (IL-1 beta) is central to acute gouty arthritis. However very little is known about genetic control of the innate immune response involved in acute gouty arthritis. Therefore our aim was to test functional single nucleotide polymorphism (SNP) variants in the toll-like receptor (TLR)-inflammasome-IL-1 beta axis for association with gout. Methods: 1,494 gout cases of European and 863 gout cases of New Zealand (NZ) Polynesian (Maori and Pacific Island) ancestry were included. Gout was diagnosed by the 1977 ARA gout classification criteria. There were 1,030 Polynesian controls and 10,942 European controls including from the publicly-available Atherosclerosis Risk in Communities (ARIC) and Framingham Heart (FHS) studies. The ten SNPs were either genotyped by Sequenom MassArray or by Affymetrix SNP array or imputed in the ARIC and FHS datasets. Allelic association was done by logistic regression adjusting by age and sex with European and Polynesian data combined by meta-analysis. Sample sets were pooled for multiplicative interaction analysis, which was also adjusted by sample set. Results: Eleven SNPs were tested in the TLR2, CD14, IL1B, CARD8, NLRP3, MYD88, P2RX7, DAPK1 and TNXIP genes. Nominally significant (P <0.05) associations with gout were detected at CARD8 rs2043211 (OR = 1.12, P = 0.007), IL1B rs1143623 (OR = 1.10, P = 0.020) and CD14 rs2569190 (OR = 1.08; P = 0.036). There was significant multiplicative interaction between CARD8 and IL1B (P = 0.005), with the IL1B risk genotype amplifying the risk effect of CARD8. Conclusion: There is evidence for association of gout with functional variants in CARD8, IL1B and CD14. The gout-associated allele of IL1B increases expression of IL-1 beta-the multiplicative interaction with CARD8 would be consistent with a synergy of greater inflammasome activity (resulting from reduced CARD8) combined with higher levels of pre-IL-1 beta expression leading to increased production of mature IL-1 beta in gout

    Diagnostic accuracy of endoscopic ultrasonography-guided tissue acquisition prior to resection of pancreatic carcinoma:a nationwide analysis

    Get PDF
    Introduction: Endoscopic ultrasonography guided tissue acquisition (EUS + TA) is used to provide a tissue diagnosis in patients with suspected pancreatic cancer. Key performance indicators (KPI) for these procedures are rate of adequate sample (RAS) and sensitivity for malignancy (SFM). Aim: assess practice variation regarding KPI of EUS + TA prior to resection of pancreatic carcinoma in the Netherlands. Patients and methods: Results of all EUS + TA prior to resection of pancreatic carcinoma from 2014–2018, were extracted from the national Dutch Pathology Registry (PALGA). Pathology reports were classified as: insufficient for analysis (b1), benign (b2), atypia (b3), neoplastic other (b4), suspected malignant (b5), and malignant (b6). RAS was defined as the proportion of EUS procedures yielding specimen sufficient for analysis. SFM was calculated using a strict definition (malignant only, SFM-b6), and a broader definition (SFM-b5+6). Results: 691 out of 1638 resected patients (42%) underwent preoperative EUS + TA. RAS was 95% (range 89–100%), SFM-b6 was 44% (20–77%), and SFM-b5+6 was 65% (53–90%). All centers met the performance target RAS&gt;85%. Only 9 out of 17 met the performance target SFM-b5+6 &gt; 85%. Conclusion: This nationwide study detected significant practice variation regarding KPI of EUS + TA procedures prior to surgical resection of pancreatic carcinoma. Therefore, quality improvement of EUS + TA is indicated
    corecore