11,872 research outputs found

    H_2 Absorption and Fluorescence for Gamma Ray Bursts in Molecular Clouds

    Get PDF
    If a gamma ray burst with strong UV emission occurs in a molecular cloud, there will be observable consequences resulting from excitation of the surrounding H2. The UV pulse from the GRB will pump H2 into vibrationally-excited levels which produce strong absorption at wavelengths < 1650 A. As a result, both the prompt flash and later afterglow will exhibit strong absorption shortward of 1650 A, with specific spectroscopic features. Such a cutoff in the emission from GRB 980329 may already have been observed by Fruchter et al.; if so, GRB 980329 was at redshift 3.0 < z < 4.4 . BVRI photometry of GRB 990510 could also be explained by H2 absorption if GRB 990510 is at redshift 1.6 < z < 2.3. The fluorescence accompanying the UV pumping of the H2 will result in UV emission from the GRB which can extend over days or months, depending on parameters of the ambient medium and beaming of the GRB flash. The 7.5-13.6 eV fluorescent luminosity is \sim 10^{41.7} erg/s for standard estimates of the parameters of the GRB and the ambient medium. Spectroscopy can distinguish this fluorescent emission from other possible sources of transient optical emission, such as a supernova.Comment: 13 pages, including 4 figures. submitted to Ap.J.(Letters

    Network theory approach for data evaluation in the dynamic force spectroscopy of biomolecular interactions

    Get PDF
    Investigations of molecular bonds between single molecules and molecular complexes by the dynamic force spectroscopy are subject to large fluctuations at nanoscale and possible other aspecific binding, which mask the experimental output. Big efforts are devoted to develop methods for effective selection of the relevant experimental data, before taking the quantitative analysis of bond parameters. Here we present a methodology which is based on the application of graph theory. The force-distance curves corresponding to repeated pulling events are mapped onto their correlation network (mathematical graph). On these graphs the groups of similar curves appear as topological modules, which are identified using the spectral analysis of graphs. We demonstrate the approach by analyzing a large ensemble of the force-distance curves measured on: ssDNA-ssDNA, peptide-RNA (system from HIV1), and peptide-Au surface. Within our data sets the methodology systematically separates subgroups of curves which are related to different intermolecular interactions and to spatial arrangements in which the molecules are brought together and/or pulling speeds. This demonstrates the sensitivity of the method to the spatial degrees of freedom, suggesting potential applications in the case of large molecular complexes and situations with multiple binding sites

    Bond breaking in vibrationally excited methane on transition metal catalysts

    Get PDF
    The role of vibrational excitation of a single mode in the scattering of methane is studied by wave packet simulations of oriented CH4 and CD4 molecules from a flat surface. All nine internal vibrations are included. In the translational energy range from 32 up to 128 kJ/mol we find that initial vibrational excitations enhance the transfer of translational energy towards vibrational energy and increase the accessibility of the entrance channel for dissociation. Our simulations predict that initial vibrational excitations of the asymmetrical stretch (nu_3) and especially the symmetrical stretch (nu_1) modes will give the highest enhancement of the dissociation probability of methane.Comment: 4 pages REVTeX, 2 figures (eps), to be published in Phys. Rev. B. (See also arXiv:physics.chem-ph/0003031). Journal version at http://publish.aps.org/abstract/PRB/v61/p1565

    Ab initio study of canted magnetism of finite atomic chains at surfaces

    Full text link
    By using ab initio methods on different levels we study the magnetic ground state of (finite) atomic wires deposited on metallic surfaces. A phenomenological model based on symmetry arguments suggests that the magnetization of a ferromagnetic wire is aligned either normal to the wire and, generally, tilted with respect to the surface normal or parallel to the wire. From a first principles point of view, this simple model can be best related to the so--called magnetic force theorem calculations being often used to explore magnetic anisotropy energies of bulk and surface systems. The second theoretical approach we use to search for the canted magnetic ground state is first principles adiabatic spin dynamics extended to the case of fully relativistic electron scattering. First, for the case of two adjacent Fe atoms an a Cu(111) surface we demonstrate that the reduction of the surface symmetry can indeed lead to canted magnetism. The anisotropy constants and consequently the ground state magnetization direction are very sensitive to the position of the dimer with respect to the surface. We also performed calculations for a seven--atom Co chain placed along a step edge of a Pt(111) surface. As far as the ground state spin orientation is concerned we obtain excellent agreement with experiment. Moreover, the magnetic ground state turns out to be slightly noncollinear.Comment: 8 pages, 5 figures; presented on the International Conference on Nanospintronics Design and Realizations, Kyoto, Japan, May 2004; to appear in J. Phys.: Cond. Matte

    Endovascular treatment for acute ischaemic stroke in routine clinical practice:prospective, observational cohort study (MR CLEAN Registry)

    Get PDF
    OBJECTIVETo determine outcomes and safety of endovascular treatment for acute ischaemic stroke, due to proximal intracranial vessel occlusion in the anterior circulation, in routine clinical practice.DESIGNOngoing, prospective, observational cohort study.SETTING16 centres that perform endovascular treatment in the Netherlands.PARTICIPANTS1488 patients included in the Multicentre Randomised Controlled Trial of Endovascular Treatment for Acute Ischaemic Stroke in the Netherlands (MR CLEAN) Registry who had received endovascular treatment, including stent retriever thrombectomy, aspiration, and all alternative methods for acute ischaemic stroke within 6.5 hours from onset of symptoms between March 2014 and June 2016.MAIN OUTCOME MEASURESThe primary outcome was the modified Rankin Scale (mRS) score, ranging from 0 (no symptoms) to 6 (death) at 90 days after the onset of symptoms. Secondary outcomes were excellent functional outcome (mRS score 0-1), good functional outcome (mRS score 0-2), and favourable functional outcome (mRS score 0-3) at 90 days; score on the extended thrombolysis in cerebral infarction scale at the end of the intervention procedure; National Institutes of Health Stroke Scale score 24-48 hours after intervention; and complications that occurred during intervention, hospital admission, or three months' follow up period. Outcomes and safety variables in the MR CLEAN Registry were compared with the MR CLEAN trial intervention and control arms.RESULTSA statistically significant shift was observed towards better functional outcome in patients in the MR CLEAN Registry compared with the MR CLEAN trial intervention arm (adjusted common odds ratio 1.30, 95% confidence interval 1.02 to 1.67) and the MR CLEAN trial control arm (1.85, 1.46 to 2.34). The reperfusion rate, with successful reperfusion defined as a score of 2B-3 on the extended thrombolysis in cerebral infarction score, was 58.7%, the same as for patients in the MR CLEAN trial. Duration from onset of stroke to start of endovascular treatment and from onset of stroke to successful reperfusion or last contrast bolus was one hour shorter for patients in the MR CLEAN Registry. Symptomatic intracranial haemorrhage occurred in 5.8% of patients in the MR CLEAN Registry compared with 7.7% in the MR CLEAN trial intervention arm and 6.4% in the MR CLEAN trial control arm.CONCLUSIONIn routine clinical practice, endovascular treatment for patients with acute ischaemic stroke is at least as effective and safe as in the setting of a randomised controlled trial.</p

    Effects of Dust on Gravitational Lensing by Spiral Galaxies

    Full text link
    Gravitational lensing of an optical QSO by a spiral galaxy is often counteracted by dust obscuration, since the line-of-sight to the QSO passes close to the center of the galactic disk. The dust in the lens is likely to be correlated with neutral hydrogen, which in turn should leave a Lyman-alpha absorption signature on the QSO spectrum. We use the estimated dust-to-gas ratio of the Milky-Way galaxy as a mean and allow a spread in its values to calculate the effects of dust on lensing by low redshift spiral galaxies. Using a no-evolution model for spirals at z<1 we find (in Lambda=0 cosmologies) that the magnification bias due to lensing is stronger than dust obscuration for QSO samples with a magnitude limit B<16. The density parameter of neutral hydrogen, Omega_HI, is overestimated in such samples and is underestimated for fainter QSOs.Comment: 18 pages, 4 figures, ApJ, in pres

    Investigation of the Domain Wall Fermion Approach to Chiral Gauge Theories on the Lattice

    Full text link
    We investigate a recent proposal to construct chiral gauge theories on the lattice using domain wall fermions. We restrict ourselves to the finite volume case, in which two domain walls are present, with modes of opposite chirality on each of them. We couple the chiral fermions on only one of the domain walls to a gauge field. In order to preserve gauge invariance, we have to add a scalar field, which gives rise to additional light mirror fermion and scalar modes. We argue that in an anomaly free model these extra modes would decouple if our model possesses a so-called strong coupling symmetric phase. However, our numerical results indicate that such a phase most probably does not exist. ---- Note: 9 Postscript figures are appended as uuencoded compressed tar file.Comment: 27p. Latex; UCSD/PTH 93-28, Wash. U. HEP/93-6

    Band-theoretical prediction of magnetic anisotropy in uranium monochalcogenides

    Full text link
    Magnetic anisotropy of uranium monochalcogenides, US, USe and UTe, is studied by means of fully-relativistic spin-polarized band structure calculations within the local spin-density approximation. It is found that the size of the magnetic anisotropy is fairly large (about 10 meV/unit formula), which is comparable with experiment. This strong anisotropy is discussed in view of a pseudo-gap formation, of which crucial ingredients are the exchange splitting of U 5f states and their hybridization with chalcogen p states (f-p hybridization). An anomalous trend in the anisotropy is found in the series (US>>USe<UTe) and interpreted in terms of competition between localization of the U 5f states and the f-p hybridization. It is the spin-orbit interaction on the chalcogen p states that plays an essential role in enlarging the strength of the f-p hybridization in UTe, leading to an anomalous systematic trend in the magnetic anisotropy.Comment: 4 pages, 5 figure
    corecore