9 research outputs found
Discovering novel germline genetic variants linked to severe fluoropyrimidine-related toxicity in- and outside <i>DPYD</i>
Background: The Alpe-DPD study (NCT02324452) demonstrated that prospective genotyping and dose-individualization using four alleles in DPYD (DPYD*2A/rs3918290, c.1236G > A/rs75017182, c.2846A > T/rs67376798 and c.1679 T > G/rs56038477) can mitigate the risk of severe fluoropyrimidine toxicity. However, this could not prevent all toxicities. The goal of this study was to identify additional genetic variants, both inside and outside DPYD, that may contribute to fluoropyrimidine toxicity. Methods: Biospecimens and data from the Alpe-DPD study were used. Exon sequencing was performed to identify risk variants inside DPYD. In silico and in vitro analyses were used to classify DPYD variants. A genome-wide association study (GWAS) with severe fluoropyrimidine-related toxicity was performed to identify variants outside DPYD. Association with severe toxicity was assessed using matched-pair analyses for the exon sequencing and logistic, Cox, and ordinal regression analyses for GWAS. Results: Twenty-four non-synonymous, frameshift, and splice site DPYD variants were detected in ten of 986 patients. Seven of these variants (c.1670C > T, c.1913 T > C, c.1925 T > C, c.506delC, c.731A > C, c.1740 + 1G > T, c.763 − 2A > G) were predicted to be deleterious. The carriers of either of these variants showed a trend towards a 2.14-fold (95% CI, 0.41–11.3, P = 0.388) increased risk of severe toxicity compared to matched controls (N = 30). After GWAS of 942 patients, no individual single nucleotide polymorphisms achieved genome-wide significance (P ≤ 5 × 10−8), however, five variants were suggestive of association (P < 5 × 10−6) with severe toxicity. Conclusions: Results from DPYD exon sequencing and GWAS analysis did not identify additional genetic variants associated with severe toxicity, which suggests that testing for single markers at a population level currently has limited clinical value. Identifying additional variants on an individual level is still promising to explain fluoropyrimidine-related severe toxicity. In addition, studies with larger samples sizes, in more diverse cohorts are needed to identify potential clinically relevant genetic variants related to severe fluoropyrimidine toxicity.</p
Discovering novel germline genetic variants linked to severe fluoropyrimidine-related toxicity in- and outside DPYD
Background: The Alpe-DPD study (NCT02324452) demonstrated that prospective genotyping and dose-individualization using four alleles in DPYD (DPYD*2A/rs3918290, c.1236G > A/rs75017182, c.2846A > T/rs67376798 and c.1679 T > G/rs56038477) can mitigate the risk of severe fluoropyrimidine toxicity. However, this could not prevent all toxicities. The goal of this study was to identify additional genetic variants, both inside and outside DPYD, that may contribute to fluoropyrimidine toxicity. Methods: Biospecimens and data from the Alpe-DPD study were used. Exon sequencing was performed to identify risk variants inside DPYD. In silico and in vitro analyses were used to classify DPYD variants. A genome-wide association study (GWAS) with severe fluoropyrimidine-related toxicity was performed to identify variants outside DPYD. Association with severe toxicity was assessed using matched-pair analyses for the exon sequencing and logistic, Cox, and ordinal regression analyses for GWAS. Results: Twenty-four non-synonymous, frameshift, and splice site DPYD variants were detected in ten of 986 patients. Seven of these variants (c.1670C > T, c.1913 T > C, c.1925 T > C, c.506delC, c.731A > C, c.1740 + 1G > T, c.763 − 2A > G) were predicted to be deleterious. The carriers of either of these variants showed a trend towards a 2.14-fold (95% CI, 0.41–11.3, P = 0.388) increased risk of severe toxicity compared to matched controls (N = 30). After GWAS of 942 patients, no individual single nucleotide polymorphisms achieved genome-wide significance (P ≤ 5 × 10−8), however, five variants were suggestive of association (P < 5 × 10−6) with severe toxicity. Conclusions: Results from DPYD exon sequencing and GWAS analysis did not identify additional genetic variants associated with severe toxicity, which suggests that testing for single markers at a population level currently has limited clinical value. Identifying additional variants on an individual level is still promising to explain fluoropyrimidine-related severe toxicity. In addition, studies with larger samples sizes, in more diverse cohorts are needed to identify potential clinically relevant genetic variants related to severe fluoropyrimidine toxicity
Use of Systemic Therapy Concurrent With Cranial Radiotherapy for Cerebral Metastases of Solid Tumors
DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer : a prospective safety analysis
Background: Fluoropyrimidine treatment can result in severe toxicity in up to 30% of patients and is often the result of reduced activity of the key metabolic enzyme dihydropyrimidine dehydrogenase (DPD), mostly caused by genetic variants in the gene encoding DPD (DPYD). We assessed the effect of prospective screening for the four most relevant DPYD variants (DPYD*2A [rs3918290, c.1905+1G>A, IVS14+1G>A], c.2846A>T [rs67376798, D949V], c.1679T>G [rs55886062, DPYD*13, I560S], and c.1236G>A [rs56038477, E412E, in haplotype B3]) on patient safety and subsequent DPYD genotype-guided dose individualisation in daily clinical care. Methods: In this prospective, multicentre, safety analysis in 17 hospitals in the Netherlands, the study population consisted of adult patients (≥18 years) with cancer who were intended to start on a fluoropyrimidine-based anticancer therapy (capecitabine or fluorouracil as single agent or in combination with other chemotherapeutic agents or radiotherapy). Patients with all tumour types for which fluoropyrimidine-based therapy was considered in their best interest were eligible. We did prospective genotyping for DPYD*2A, c.2846A>T, c.1679T>G, and c.1236G>A. Heterozygous DPYD variant allele carriers received an initial dose reduction of 25% (c.2846A>T and c.1236G>A) or 50% (DPYD*2A and c.1679T>G), and DPYD wild-type patients were treated according to the current standard of care. The primary endpoint of the study was the frequency of severe (National Cancer Institute Common Terminology Criteria for Adverse Events version 4.03 grade ≥3) overall fluoropyrimidine-related toxicity across the entire treatment duration. We compared toxicity incidence between DPYD variant allele carriers and DPYD wild-type patients on an intention-to-treat basis, and relative risks (RRs) for severe toxicity were compared between the current study and a historical cohort of DPYD variant allele carriers treated with full dose fluoropyrimidine-based therapy (derived from a previously published meta-analysis). This trial is registered with ClinicalTrials.gov, number NCT02324452, and is complete. Findings: Between April 30, 2015, and Dec 21, 2017, we enrolled 1181 patients. 78 patients were considered non-evaluable, because they were retrospectively identified as not meeting inclusion criteria, did not start fluoropyrimidine-based treatment, or were homozygous or compound heterozygous DPYD variant allele carriers. Of 1103 evaluable patients, 85 (8%) were heterozygous DPYD variant allele carriers, and 1018 (92%) were DPYD wild-type patients. Overall, fluoropyrimidine-related severe toxicity was higher in DPYD variant carriers (33 [39%] of 85 patients) than in wild-type patients (231 [23%] of 1018 patients; p=0·0013). The RR for severe fluoropyrimidine-related toxicity was 1·31 (95% CI 0·63–2·73) for genotype-guided dosing compared with 2·87 (2·14–3·86) in the historical cohort for DPYD*2A carriers, no toxicity compared with 4·30 (2·10–8·80) in c.1679T>G carriers, 2·00 (1·19–3·34) compared with 3·11 (2·25–4·28) for c.2846A>T carriers, and 1·69 (1·18–2·42) compared with 1·72 (1·22–2·42) for c.1236G>A carriers. Interpretation: Prospective DPYD genotyping was feasible in routine clinical practice, and DPYD genotype-based dose reductions improved patient safety of fluoropyrimidine treatment. For DPYD*2A and c.1679T>G carriers, a 50% initial dose reduction was adequate. For c.1236G>A and c.2846A>T carriers, a larger dose reduction of 50% (instead of 25%) requires investigation. Since fluoropyrimidines are among the most commonly used anticancer agents, these findings suggest that implementation of DPYD genotype-guided individualised dosing should be a new standard of care. Funding: Dutch Cancer Society