16,491 research outputs found

    Island formation without attractive interactions

    Get PDF
    We show that adsorbates on surfaces can form islands even if there are no attractive interactions. Instead strong repulsion between adsorbates at short distances can lead to islands, because such islands increase the entropy of the adsorbates that are not part of the islands. We suggest that this mechanism cause the observed island formation in O/Pt(111), but it may be important for many other systems as well.Comment: 11 pages, 4 figure

    3D-2D crossover in the naturally layered superconductor (LaSe)1.14(NbSe2)

    Full text link
    The temperature and angular dependencies of the resistive upper critical magnetic field Bc2B_{c2} reveal a dimensional crossover of the superconducting state in the highly anisotropic misfit-layer single crystal of (LaSe)1.14_{1.14}(NbSe2_2) with the critical temperature TcT_c of 1.23 K. The temperature dependence of the upper critical field Bc2∥ab(T)B_{c2\parallel ab}(T) for a field orientation along the conducting (ab)(ab)-planes displays a characteristic upturn at 1.1 K and below this temperature the angular dependence of Bc2B_{c2} has a cusp around the parallel field orientation. Both these typical features are observed for the first time in a naturally crystalline layered system.Comment: 7 pages incl. 3 figure

    Phonon-modulated magnetic interactions and spin Tomonaga-Luttinger liquid in the p-orbital antiferromagnet CsO2

    Full text link
    The magnetic response of antiferromagnetic CsO2, coming from the p-orbital S=1/2 spins of anionic O2- molecules, is followed by 133Cs nuclear magnetic resonance across the structural phase transition occuring at Ts1=61 K on cooling. Above Ts1, where spins form a square magnetic lattice, we observe a huge, nonmonotonic temperature dependence of the exchange coupling originating from thermal librations of O2- molecules. Below Ts1, where antiferromagnetic spin chains are formed as a result of p-orbital ordering, we observe a spin Tomonaga-Luttinger-liquid behavior of spin dynamics. These two interesting phenomena, which provide rare simple manifestations of the coupling between spin, lattice and orbital degrees of freedom, establish CsO2 as a model system for molecular solids.Comment: 9 pages, 5 figures (with Supplemental Material), to appear in Physical Review Letter

    One-dimensional quantum antiferromagnetism in the p−p-orbital CsO2_2 compound revealed by electron paramagnetic resonance

    Full text link
    Recently it was proposed that the orbital ordering of πx,y∗\pi_{x,y}^* molecular orbitals in the superoxide CsO2_2 compound leads to the formation of spin-1/2 chains below the structural phase transition occuring at Ts1=61T_{\rm{s1}}=61~K on cooling. Here we report a detailed X-band electron paramagnetic resonance (EPR) study of this phase in CsO2_2 powder. The EPR signal appears as a broad line below Ts1T_{\rm{s1}}, which is replaced by the antiferromagnetic resonance below the N\'{e}el temperature TN=8.3T_{\rm N}=8.3~K. The temperature dependence of the EPR linewidth between Ts1T_{\rm{s1}} and TNT_{\rm{N}} agrees with the predictions for the one-dimensional Heisenberg antiferromagnetic chain of S=1/2S=1/2 spins in the presence of symmetric anisotropic exchange interaction. Complementary analysis of the EPR lineshape, linewidth and the signal intensity within the Tomonaga-Luttinger liquid (TLL) framework allows for a determination of the TLL exponent K=0.48K=0.48. Present EPR data thus fully comply with the quantum antiferromagnetic state of spin-1/2 chains in the orbitally ordered phase of CsO2_2, which is, therefore, a unique p−p-orbital system where such a state could be studied.Comment: 6 pages, 3 figure

    Upper critical field in {Ba1−x_{1-x}Kx_xBiO3_3}: magnetotransport versus magnetotunneling

    Full text link
    Elastic tunneling is used as a powerful direct tool to determine the upper critical field Hc2(T)H_{c2}(T) in the high-TcT_c oxide Ba1−x_{1-x}Kx_xBiO3_3. The temperature dependence of Hc2H_{c2} inferred from the tunneling follows the Werthamer-Helfand-Hohenberg prediction for type-II superconductors. A comparison will be made with resistively determined critical field data.Comment: 4 pages incl. 5 figure

    Magnetic excitations and phonons in the spin-chain compound NaCu2O2

    Full text link
    We report an inelastic light scattering study of single-crystalline NaCu2_2O2_2, a spin-chain compound known to exhibit a phase with helical magnetic order at low temperatures. Phonon excitations were studied as a function of temperature and light polarization, and the phonon frequencies are compared to the results of ab-initio lattice dynamical calculations, which are also reported here. The good agreement between the observed and calculated modes allows an assignment of the phonon eigenvectors. Two distinct high-energy two-magnon features as well as a sharp low-energy one-magnon peak were also observed. These features are discussed in terms of the magnon modes expected in a helically ordered state. Their polarization dependence provides evidence of substantial exchange interactions between two closely spaced spin chains within a unit cell. At high temperatures, the spectral features attributable to magnetic excitations are replaced by a broad, quasielastic mode due to overdamped spin excitations
    • …
    corecore