12,764 research outputs found

    De CAI in de provincie Vlaams-Brabant

    Get PDF

    Non-perturbative renormalization of moments of parton distribution functions

    Full text link
    We compute non-perturbatively the evolution of the twist-2 operators corresponding to the average momentum of non-singlet quark densities. The calculation is based on a finite-size technique, using the Schr\"odinger Functional, in quenched QCD. We find that a careful choice of the boundary conditions, is essential, for such operators, to render possible the computation. As a by-product we apply the non-perturbatively computed renormalization constants to available data of bare matrix elements between nucleon states.Comment: Lattice2003(Matrix); 3 pages, 3 figures. Talk by A.

    Scaling test of quenched Wilson twisted mass QCD at maximal twist

    Full text link
    We present the results of an extended scaling test of quenched Wilson twisted mass QCD. We fix the twist angle by using two definitions of the critical mass, the first obtained by requiring the vanishing of the pseudoscalar meson mass m_PS for standard Wilson fermions and the second by requiring restoration of parity at non-zero value of the twisted mass mu and subsequently extrapolating to mu=0. Depending on the choice of the critical mass we simulate at values of beta in [5.7,6.45], for a range of pseudoscalar meson masses 250 MeV < m_PS < 1 GeV and we perform the continuum limit for the pseudoscalar meson decay constant f_PS and various hadron masses (vector meson m_V, baryon octet m_oct and baryon decuplet m_dec) at fixed value of r_0 m_PS. For both definitions of the critical mass, lattice artifacts are consistent with O(a) improvement. However, with the second definition, large O(a^2) discretization errors present at small quark mass with the first definition are strongly suppressed. The results in the continuum limit are in very good agreement with those from the Alpha and CP-PACS Collaborations.Comment: 6 pages, Talk presented at Lattice 2005, Dublin, 25-30 July 200

    Field-reversed bubble in deep plasma channels for high quality electron acceleration

    Full text link
    We study hollow plasma channels with smooth boundaries for laser-driven electron acceleration in the bubble regime. Contrary to the uniform plasma case, the laser forms no optical shock and no etching at the front. This increases the effective bubble phase velocity and energy gain. The longitudinal field has a plateau that allows for mono-energetic acceleration. We observe as low as 10^{-3} r.m.s. relative witness beam energy uncertainty in each cross-section and 0.3% total energy spread. By varying plasma density profile inside a deep channel, the bubble fields can be adjusted to balance the laser depletion and dephasing lengths. Bubble scaling laws for the deep channel are derived. Ultra-short pancake-like laser pulses lead to the highest energies of accelerated electrons per Joule of laser pulse energy

    Bond Strength Tests Between Silicon Wafers and Duran Tubes (Fusion Bonded Fluidic Interconnects)

    Get PDF
    The fusion bond strength of glass tubes with standard silicon wafers is presented. Experiments with plain silicon wafers and those coated with silicon oxide and silicon nitride are presented. Results obtained are discussed in terms of homogeneity and strength of fusion bond. High pressure testing shows that the bond strength is large enough for most applications of fluidic interconnects. The bond strength for 525 /spl mu/m thick silicon with glass tubes having outer diameter of 6 mm and with wall thickness 2 mm, is more than 60 bars after annealing at a temperature of 800/spl deg/C

    Phonon-assisted tunneling in the quantum regime of Mn12-ac

    Full text link
    Longitudinal or transverse magnetic fields applied on a crystal of Mn12-ac allows to observe independent tunnel transitions between m=-S+p and m=S-n-p (n=6-10, p=0-2 in longitudinal field and n=p=0 in transverse field). We observe a smooth transition (in longitudinal) from coherent ground-state to thermally activated tunneling. Furthermore two ground-state relaxation regimes showing a crossover between quantum spin relaxation far from equilibrium and near equilibrium, when the environment destroys multimolecule correlations. Finally, we stress that the complete Hamiltonian of Mn12 should contain odd spin operators of low order
    • 

    corecore