14,949 research outputs found

    A method to detect baseline emission and plant damage induced volatile emission in a greenhouse

    Get PDF
    The objective of this research was to ascertain if 1) baseline emission and 2) damage induced emission of volatile plant substances could be detected under greenhouse conditions. A laboratory method was validated for analysing the air in a semi-closed greenhouse with 44 m2 floor area. This greenhouse, with a volume of 270 m3, was climate controlled and light was supplied with assimilation lamps. Sixty tomato plants (Lycopersicon esculentum Mill cv. Moneymaker) were grown in this greenhouse. These plants were artificially damaged on a weekly interval by stroking the stems. Continuous flow pumps were used to purge the air surrounding the plants through tubes containing an adsorbent. This sampling step was performed before and directly after damage of the plants. After sampling, the tubes were transferred to the lab for analysis. The analysis of volatile compounds was performed using a high-throughput gas chromatography-mass spectrometry system. The method enabled the detection of baseline level emission and the emission of volatiles released after artificially damaging the tomato plants during a 6 weeks growing period. Most dominant compounds for baseline emission were the monoterpenes ß-phellandrene, 2-carene, limonene, ¿-phellandrene and ¿-pinene. Directly after damage, these compounds showed an increase of up to 100 times compared to baseline level emission. With these results, we prove that it is possible to detect baseline- and plant damage induced volatile emission in a greenhouse. This area of research is promising but more research needs to be done to determine whether it is possible to detect plant damage due to pests and pathogens using volatile sensing

    "GiGa": the Billion Galaxy HI Survey -- Tracing Galaxy Assembly from Reionization to the Present

    Full text link
    In this paper, we review the Billion Galaxy Survey that will be carried out at radio--optical wavelengths to micro--nanoJansky levels with the telescopes of the next decades. These are the Low-Frequency Array, the Square Kilometer Array and the Large Synoptic Survey Telescope as survey telescopes, and the Thirty Meter class Telescopes for high spectral resolution+AO, and the James Webb Space Telescope (JWST) for high spatial resolution near--mid IR follow-up. With these facilities, we will be addressing fundamental questions like how galaxies assemble with super-massive black-holes inside from the epoch of First Light until the present, how these objects started and finished the reionization of the universe, and how the processes of star-formation, stellar evolution, and metal enrichment of the IGM proceeded over cosmic time. We also summarize the high-resolution science that has been done thus far on high redshift galaxies with the Hubble Space Telescope (HST). Faint galaxies have steadily decreasing sizes at fainter fluxes and higher redshifts, reflecting the hierarchical formation of galaxies over cosmic time. HST has imaged this process in great structural detail to z<~6. We show that ultradeep radio-optical surveys may slowly approach the natural confusion limit, where objects start to unavoidably overlap because of their own sizes, which only SKA can remedy with HI redshifts for individual sub-clumps. Finally, we summarize how the 6.5 meter James Webb Space Telescope (JWST) will measure first light, reionization, and galaxy assembly in the near--mid-IR.Comment: 8 pages, LaTeX2e requires 'aip' style (included), 8 postscript figures. To appear in the proceedings of the `The Evolution of Galaxies through the Neutral Hydrogen Window' conference, Arecibo Observatory Feb 1-3, 2008; Eds. R. Minchin & E. Momjian, AIP Conf Pro

    Far-Infrared and Sub-Millimeter Observations and Physical Models of the Reflection Nebula Ced 201

    Full text link
    ISO [C II] 158 micron, [O I] 63 micron, and H_2 9 and 17 micron observations are presented of the reflection nebula Ced 201, which is a photon-dominated region illuminated by a B9.5 star with a color temperature of 10,000 K (a cool PDR). In combination with ground based [C I] 609 micron, CO, 13CO, CS and HCO+ data, the carbon budget and physical structure of the reflection nebula are constrained. The obtained data set is the first one to contain all important cooling lines of a cool PDR, and allows a comparison to be made with classical PDRs. To this effect one- and three-dimensional PDR models are presented which incorporate the physical characteristics of the source, and are aimed at understanding the dominant heating processes of the cloud. The contribution of very small grains to the photo-electric heating rate is estimated from these models and used to constrain the total abundance of PAHs and small grains. Observations of the pure rotational H_2 lines with ISO, in particular the S(3) line, indicate the presence of a small amount of very warm, approximately 330 K, molecular gas. This gas cannot be accommodated by the presented models.Comment: 32 pages, 7 figures, in LaTeX. To be published in Ap

    Exploring the phase structure of lattice QCD with twisted mass quarks

    Full text link
    The phase structure of zero temperature twisted mass lattice QCD is investigated. We find strong metastabilities in the plaquette observable when the untwisted quark mass sweeps across zero.Comment: Talks presented at Lattice2004(spectrum), 6 pages, 6 figure

    Tracing Galaxy Assembly: Tadpole Galaxies in the Hubble Ultra Deep Field

    Full text link
    In the Hubble Ultra Deep Field (HUDF) an abundance of galaxies is seen with a knot at one end plus an extended tail, resembling a tadpole. These "tadpole galaxies" appear dynamically unrelaxed--presumably in an early merging state--where tidal interactions likely created the distorted knot-plus-tail morphology. Here we systematically select tadpole galaxies from the HUDF and study their properties as a function of their photometric redshifts. In a companion HUDF variability study, Cohen et al. (2005) revealed a total of 45 variable objects believed to be Active Galactic Nuclei (AGN). Here we show that this faint AGN sample has no overlap with the tadpole galaxy sample, as predicted by theoretical work. The tadpole morphology--combined with the lack of overlap with the variable objects--supports the idea that these galaxies are in the process of an early-stage merger event, i.e., at a stage that likely precedes the "turn-on" of any AGN component and the onset of any point-source variability.Comment: 7 pages, 4 figures. Accepted for publication by Astrophysical Journa

    Moving beyond a limited follow-up in cost-effectiveness analyses of behavioral interventions

    Get PDF
    Background Cost-effectiveness analyses of behavioral interventions typically use a dichotomous outcome criterion. However, achieving behavioral change is a complex process involving several steps towards a change in behavior. Delayed effects may occur after an intervention period ends, which can lead to underestimation of these interventions. To account for such delayed effects, intermediate outcomes of behavioral change may be used in cost-effectiveness analyses. The aim of this study is to model cognitive parameters of behavioral change into a cost-effectiveness model of a behavioral intervention. Methods The cost-effectiveness analysis (CEA) of an existing dataset from an RCT in which an high-intensity smoking cessation intervention was compared with a medium-intensity intervention, was re-analyzed by modeling the stages of change of the Transtheoretical Model of behavioral change. Probabilities were obtained from the dataset and literature and a sensitivity analysis was performed. Results In the original CEA over the first 12 months, the high-intensity intervention dominated in approximately 58% of the cases. After modeling the cognitive parameters to a future 2nd year of follow-up, this was the case in approximately 79%. Conclusion This study showed that modeling of future behavioral change in CEA of a behavioral intervention further strengthened the results of the standard CEA. Ultimately, modeling future behavioral change could have important consequences for health policy development in general and the adoption of behavioral interventions in particular

    Quantum Transport with Spin Dephasing: A Nonequilibrium Green's Function Approach

    Full text link
    A quantum transport model incorporating spin scattering processes is presented using the non-equilibrium Green's function (NEGF) formalism within the self-consistent Born approximation. This model offers a unified approach by capturing the spin-flip scattering and the quantum effects simultaneously. A numerical implementation of the model is illustrated for magnetic tunnel junction devices with embedded magnetic impurity layers. The results are compared with experimental data, revealing the underlying physics of the coherent and incoherent transport regimes. It is shown that small variations in magnetic impurity spin-states/concentrations could cause large deviations in junction magnetoresistances.Comment: NEGF Formalism, Spin Dephasing, Magnetic Tunnel Junctions, Magnetoresistanc
    corecore