5 research outputs found

    Expanded metabolite coverage of Saccharomyces cerevisiae extract through improved chloroform/methanol extraction and tert-butyldimethylsilyl derivatization

    Get PDF
    AbstractWe present an improved extraction and derivatization protocol for GC–MS analysis of amino/non-amino acids in Saccharomyces cerevisiae. Yeast cells were extracted with chloroform: aqueous-methanol (1:1, v/v) and the resulting non-polar and polar extracts combined and dried for derivatization. Polar and non-polar metabolites were derivatized using tert-butyldimethylsilyl (t-BDMS) dissolved in acetonitrile. Using microwave treatment of the samples, the derivatization process could be completed within 2 h (from >20 h of the conventional method), providing fully derivatized metabolites that contain multiple derivatizable organic functional groups. This results in a single derivative from one metabolite, leading to increased accuracy and precision for identification and quantification of the method. Analysis of combined fractions allowed the method to expand the coverage of detected metabolites from polar metabolites i.e. amino acids, organic acids and non-polar metabolites i.e. fatty alcohols and long-chain fatty acids which are normally non detectable. The recoveries of the extraction method was found at 88 ± 4%, RSD, N = 3 using anthranilic acid as an internal standard. The method promises to be a very useful tool in various aspects of biotechnological applications i.e. development of cell factories, metabolomics profiling, metabolite identification, 13C-labeled flux analysis or semi-quantitative analysis of metabolites in yeast samples

    Fast and accurate preparation fatty acid methyl esters by microwave-assisted derivatization in the yeast Saccharomyces cerevisiae

    No full text
    We present a fast and accurate method for preparation of fatty acid methyl esters (FAMEs) using microwave-assisted derivatization of fatty acids present in yeast samples. The esterification of free/bound fatty acids to FAMEs was completed within 5 min, which is 24 times faster than with conventional heating methods. The developed method was validated in two ways: (1) through comparison with a conventional method (hot plate) and (2) through validation with the standard reference material (SRM) 3275-2 omega-3 and omega-6 fatty acids in fish oil (from the Nation Institute of Standards and Technology, USA). There were no significant differences (P > 0.05) in yields of FAMEs with both validations. By performing a simple modification of closed-vessel microwave heating, it was possible to carry out the esterification in Pyrex glass tubes kept inside the closed vessel. Hereby, we are able to increase the number of sample preparations to several hundred samples per day as the time for preparation of reused vessels was eliminated. Pretreated cell disruption steps are not required, since the direct FAME preparation provides equally quantitative results. The new microwave-assisted derivatization method facilitates the preparation of FAMEs directly from yeast cells, but the method is likely to also be applicable for other biological samples

    Rapid Quantification of Yeast Lipid using Microwave-Assisted Total Lipid Extraction and HPLC-CAD

    No full text
    We here present simple and rapid methods for fast screening of yeast lipids in <i>Saccharomyces cerevisiae</i>. First we introduced a microwave-assisted technique for fast lipid extraction that allows the extraction of lipids within 10 min. The new method enhances extraction rate by 27 times, while maintaining product yields comparable to conventional methods (<i>n</i> = 14, <i>P</i> > 0.05). The recovery (<i>n</i> = 3) from spiking of synthetic standards were 92 ± 6% for cholesterol, 95 ± 4% for triacylglycerol, and 92 ± 4% for free fatty acids. Additionally, the new extraction method combines cell disruption and extraction in one step, and the approach, therefore, not only greatly simplifies sample handling but also reduces analysis time and minimizes sample loss during sample preparation. Second, we developed a chromatographic separation that allowed separation of neutral and polar lipids from the extracted samples within a single run. The separation was performed based on a three gradient solvent system combined with hydrophilic interaction liquid chromatography-HPLC followed by detection using a charged aerosol detector. The method was shown to be highly reproducible in terms of retention time of the analytes (intraday; 0.002–0.034% RSD; <i>n</i> = 10, interday; 0.04–1.35% RSD; <i>n</i> = 5) and peak area (intraday; 0.63–6% RSD; <i>n</i> = 10, interday; 4–12% RSD; <i>n</i> = 5)

    Rapid Quantification of Yeast Lipid using Microwave-Assisted Total Lipid Extraction and HPLC-CAD

    No full text
    We here present simple and rapid methods for fast screening of yeast lipids in Saccharomyces cerevisiae. First we introduced a microwave-assisted technique for fast lipid extraction that allows the extraction of lipids within 10 min. The new method enhances extraction rate by 27 times, while maintaining product yields comparable to conventional methods (n = 14, P > 0.05). The recovery (n = 3) from spiking of synthetic standards were 92 +/- 6% for cholesterol, 95 +/- 4% for triacylglycerol, and 92 +/- 4% for free fatty acids. Additionally, the new extraction method combines cell disruption and extraction in one step, and the approach, therefore, not only greatly simplifies sample handling but also reduces analysis time and minimizes sample loss during sample preparation. Second, we developed a chromatographic separation that allowed separation of neutral and polar lipids from the extracted samples within a single run. The separation was performed based on a three gradient solvent system combined with hydrophilic interaction liquid chromatography-HPLC followed by detection using a charged aerosol detector. The method was shown to be highly reproducible in terms of retention time of the analytes (intraday; 0.002-0.034% RSD; n = 10, interday; 0.04-1.35% RSD; n = 5) and peak area (intraday; 0.63-6% RSD; n = 10, interday; 4-12% RSD; n = 5)
    corecore