85 research outputs found
Anion binding to the chloride pump, halorhodopsin, and its implications for the transport mechanism
AbstractThe light-driven chloride pump, halorhodopsin, binds and transports chloride across the membrane, and to a lesser extent nitrate. Binding and transport kinetics, and resonance Raman spectra of the retinal Schiff base, with these anions suggest the existence of two mutually exclusive binding sites. One of these may be the uptake site, and the other the release site during the transport. Plausible locations can be suggested for these sites, because halorhodopsin is a small protein with few buried positively charged residues, and the primary structure of a second pigment with similar function has recently become available for comparison
Halide binding by the purified halorhodopsin chromoprotein. II. New chloride-binding sites revealed by 35Cl NMR
Halorhodopsin is a light-driven chloride pump in the cell membrane of Halobacterium halobium. Recently, a polypeptide of apparent Mr = 20,000 has been purified that contains the halorhodopsin chromophore. Here we use 35Cl NMR to show that the purified chromoprotein possesses two previously unknown classes of chloride-binding sites. One class exhibits a low affinity (KD much greater than 1 M) for chloride and bromide. The second class exhibits a higher affinity (KD = 110 Âą 50 mM) for chloride and also binds other anions according to the affinity series I-, SCN- greater than Br-, NO-3 greater than Cl- greater than F- , citrate. Both classes of NMR site remain intact at pH 11, indicating that the essential positive charges are provided by arginine. Also, both classes are unaffected by bleaching, suggesting that the sites are not in the immediate vicinity of the halorhodopsin chromophore. Although the chromoprotein also appears to contain the chloride- transport site (Steiner, M., Oesterhelt, D., Ariki, M., and Lanyi, J. K. (1984) J. Biol. Chem. 259, 2179-2184), this site was not detected by 35Cl NMR, suggesting that the transport site is in the interior of the protein where it is sampled slowly by chloride in the medium. It is proposed that the purified chromoprotein possesses a channel leading from the medium to the transport site and that the channel contains the high affinity NMR site which facilitates the migration of chloride between the medium and the transport site.
We have also used 35Cl NMR to study chloride binding to purified monomeric bacteriorhodopsin; however, this protein contains no detectable chloride-binding sites
Characterization of the Proton-Transporting Photocycle of Pharaonis Halorhodopsin
AbstractThe photocycle of pharaonis halorhodopsin was investigated in the presence of 100mM NaN3 and 1M Na2SO4. Recent observations established that the replacement of the chloride ion with azide transforms the photocycle from a chloride-transporting one into a proton-transporting one. Kinetic analysis proves that the photocycle is very similar to that of bacteriorhodopsin. After K and L, intermediate M appears, which is missing from the chloride-transporting photocycle. In this intermediate the retinal Schiff base deprotonates. The rise of M in halorhodopsin is in the microsecond range, but occurs later than in bacteriorhodopsin, and its decay is more accentuated multiphasic. Intermediate N cannot be detected, but a large amount of O accumulates. The multiphasic character of the last step of the photocycle could be explained by the existence of a HRⲠstate, as in the chloride photocycle. Upon replacement of chloride ion with azide, the fast electric signal changes its sign from positive to negative, and becomes similar to that detected in bacteriorhodopsin. The photocycle is enthalpy-driven, as is the chloride photocycle of halorhodopsin. These observations suggest that, while the basic charge translocation steps become identical to those in bacteriorhodopsin, the storage and utilization of energy during the photocycle remains unchanged by exchanging chloride with azide
Trimeric mutant bacteriorhodopsin, D85N, shows a monophasic CD spectrum
AbstractThe structure of mutant bacteriorhodopsin (bR), D85N, was examined by CD and X-ray diffraction at pH 7. The absorption maximum of D85N at pH 7 is located at 605 nm, which is similar to the acid-blue form of wild-type bR. D85N shows a monophasic CD band, the maximum of which is at 575 nm, although the crystalline arrangement and the trimeric structure is maintained. The acid-blue form of wild-type bR shows a biphasic CD despite the similarity in absorption spectra
Directed evolution of a far-red fluorescent rhodopsin
Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life. A member of this protein family, Archaerhodopsin-3 (Arch) of halobacterium Halorubrum sodomense, was recently shown to function as a fluorescent indicator of membrane potential when expressed in mammalian neurons. Arch fluorescence, however, is very dim and is not optimal for applications in live-cell imaging. We used directed evolution to identify mutations that dramatically improve the absolute brightness of Arch, as confirmed biochemically and with live-cell imaging (in Escherichia coli and human embryonic kidney 293 cells). In some fluorescent Arch variants, the pK_a of the protonated Schiff-base linkage to retinal is near neutral pH, a useful feature for voltage-sensing applications. These bright Arch variants enable labeling of biological membranes in the far-red/infrared and exhibit the furthest red-shifted fluorescence emission thus far reported for a fluorescent protein (maximal excitation/emission at âź620 nm/730 nm)
Removal and Reconstitution of the Carotenoid Antenna of Xanthorhodopsin
Salinixanthin, a C40-carotenoid acyl glycoside, serves as a light-harvesting antenna in the retinal-based proton pump xanthorhodopsin of Salinibacter ruber. In the crystallographic structure of this protein, the conjugated chain of salinixanthin is located at the proteinâlipid boundary and interacts with residues of helices E and F. Its ring, with a 4-keto group, is rotated relative to the plane of the Ď-system of the carotenoid polyene chain and immobilized in a binding site near the β-ionone retinal ring. We show here that the carotenoid can be removed by oxidation with ammonium persulfate, with little effect on the other chromophore, retinal. The characteristic CD bands attributed to bound salinixanthin are now absent. The kinetics of the photocycle is only slightly perturbed, showing a 1.5-fold decrease in the overall turnover rate. The carotenoid-free protein can be reconstituted with salinixanthin extracted from the cell membrane of S. ruber. Reconstitution is accompanied by restoration of the characteristic vibronic structure of the absorption spectrum of the antenna carotenoid, its chirality, and the excited-state energy transfer to the retinal. Minor modification of salinixanthin, by reducing the carbonyl C=O double bond in the ring to a C-OH, suppresses its binding to the protein and eliminates the antenna function. This indicates that the presence of the 4-keto group is critical for carotenoid binding and efficient energy transfer
Light-dependent trans to cis isomerization of the retinal in halorhodopsin
AbstractFlash-induced absorption changes in the near UV were determined for bacteriorhodopsin and halorhodopsin on a millisecond time scale. The difference spectrum obtained for bacteriorhodopsin was comparable to model difference spectra of tyrosine (aromatic OH deprotonated vs protonated), as found by others. The flash-induced difference spectrum for halorhodopsin, in contrast, resembled a model spectrum opbtained for trans to 13-cis isomerization of retinal in bacteriorhodopsin. A model for chloride translocation by halorhodopsin is presented, in which the retinal isomerization moves positive charges, which in turn modulate the affinity of a site to chloride
Structural Changes in the N and NⲠStates of the Bacteriorhodopsin Photocycle
The bacteriorhodopsin transport cycle includes protonation of the retinal Schiff base by Asp96 (MâN reaction) and reprotonation of Asp96 from the cytoplasmic surface (NâNⲠreaction). We measured distance changes between pairs of spin-labeled structural elements of interest, and in general observed larger overall structural changes in the N state compared with the NⲠstate. The distance between the C-D loop and E-F interhelical loops in A103R1/M163R1 increased âź6 Ă
in the N state and âź3 Ă
in the NⲠstate. The opposite trend of distance changes in V101R1/A168R1 and L100R1/T170R1 supports counterclockwise rotation of helix F in the N but not the NⲠstate. Small distance increases were observed in S169R1/S226R1, but little change was seen in G106R1/G155R1. Taking earlier published EPR data into account, we suggest that structural changes of the E-F loop occur first, and then helices F and G begin to move together in the late M state. These motions then reach their maximum amplitude in the N state, evidently to facilitate the release of a proton from Asp96 and the formation of a proton-conduction pathway from Asp96 to the Schiff base. The structural changes reverse their directions and decay in the NⲠstate
- âŚ