10 research outputs found

    The expression of heat shock genes during normal development in <i>Drosophila melanogaster</i> (heat shock/abundant transcripts/developmental regulation)

    No full text
    Drosophila melanogaster cells and tissues respond to heat shock by dramatically altering their pattern of transcription and translation, leading to the rapid synthesis of a small number of polypeptides, the heat shock proteins (hsps). By using cloned hsp DNA we have detected sequences complementary to heat shock genes in RNA prepared from non-heat-shocked animals of different developmental stages. Hsp 83 mRNA is present at high levels in all stages examined. Hsp 68 and 70 mRNAs are present at very low levels in most stages and at slightly higher concentration in pupae. Hsp 26 and 27 mRNAs are detected in embryos. Hsp 23, 26 and 27 mRNA are barely detectable in early third instar larvae but are major components of late third instar and early pupal RNA. Hsp 22 mRNA is also detected in early pupae. Later in development the levels of the small hsp mRNAs decrease but a further peak in abundance of hsp 26 and 27 mRNAs is found in mature adult females

    In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a Polycomb-response element

    No full text
    Parasegmental (PS)-specific expression of the homeotic genes of the bithorax-complex (BX-C) appears to depend upon the subdivision of the complex into a series of functionally independent cis-regulatory domains. Fab-7 is a regulatory element that lies between iab-6 and iab-7 (the PS11- and PS12-specific cis-regulatory domains, respectively). Deletion of Fab-7 causes ectopic expression of iab-7 in PS11 (where normally only iab-6 is active). Two models have been proposed to account for the dominant Fab-7 phenotype. The first considers that Fab-7 functions as a boundary element that insulates iab-6 and iab-7. The second model envisages that Fab-7 contains a silencer element that keeps iab-7 repressed in parasegments anterior to PS12. Using a P-element inserted in the middle of the Fab-7 region (the bit transposon), we have generated an extensive collection of new Fab-7 mutations that allow us to subdivide Fab-7 into a boundary element and a Polycomb-respond element (PRE). The boundary lies within 1 kb of DNA on the proximal side of the bit transposon (towards iab-6). Deletions removing this element alone cause a complex gain- and loss-of-function phenotype in PS11; in some groups of cells, both iab-6 and iab-7 are active, while in others both iab-6 and iab-7 are inactive. Thus, deletion of the boundary allows activating as well as repressing activities to travel between iab-6 and iab-7. We also provide evidences that the boundary region contains an enhancer blocker element. The Polycomb-response element lies within 0.5 kb of DNA immediately distal to the boundary (towards iab-7). Deletions removing the PRE alone do not typically cause any visible phenotype as homozygotes. Interestingly, weak ectopic activation of iab-7 is observed in hemizygous PRE deletions, suggesting that the mechanisms that keep iab-7 repressed in the absence of this element may depend upon chromosome pairing. These results help to reconcile the previously contradictory models on Fab-7 function and to shed light on how a chromatin domain boundary and a nearby PRE concur in the setting up of the appropriate PS-specific expression of the Abd-B gene of the BX-C

    In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a Polycomb-response element

    No full text
    Parasegmental (PS)-specific expression of the homeotic genes of the bithorax-complex (BX-C) appears to depend upon the subdivision of the complex into a series of functionally independent cis-regulatory domains. Fab-7 is a regulatory element that lies between iab-6 and iab-7 (the PS11- and PS12-specific cis-regulatory domains, respectively). Deletion of Fab-7 causes ectopic expression of iab-7 in PS11 (where normally only iab-6 is active). Two models have been proposed to account for the dominant Fab-7 phenotype. The first considers that Fab-7 functions as a boundary element that insulates iab-6 and iab-7. The second model envisages that Fab-7 contains a silencer element that keeps iab-7 repressed in parasegments anterior to PS12. Using a P-element inserted in the middle of the Fab-7 region (the bit transposon), we have generated an extensive collection of new Fab-7 mutations that allow us to subdivide Fab-7 into a boundary element and a Polycomb-respond element (PRE). The boundary lies within 1 kb of DNA on the proximal side of the bit transposon (towards iab-6). Deletions removing this element alone cause a complex gain- and loss-of-function phenotype in PS11; in some groups of cells, both iab-6 and iab-7 are active, while in others both iab-6 and iab-7 are inactive. Thus, deletion of the boundary allows activating as well as repressing activities to travel between iab-6 and iab-7. We also provide evidences that the boundary region contains an enhancer blocker element. The Polycomb-response element lies within 0.5 kb of DNA immediately distal to the boundary (towards iab-7). Deletions removing the PRE alone do not typically cause any visible phenotype as homozygotes. Interestingly, weak ectopic activation of iab-7 is observed in hemizygous PRE deletions, suggesting that the mechanisms that keep iab-7 repressed in the absence of this element may depend upon chromosome pairing. These results help to reconcile the previously contradictory models on Fab-7 function and to shed light on how a chromatin domain boundary and a nearby PRE concur in the setting up of the appropriate PS-specific expression of the Abd-B gene of the BX-C

    Molecular Genetics of the ROSY-ACE Region of DROSOPHILA MELANOGASTER

    No full text
    Three hundred and fifteen kilobases of DNA from the rosy-Ace region on chromosome 3R of D. melanogaster have previously been cloned and extensively characterized. We describe the isolation of nine new deficiency mutants that break within the 315-kb interval. The position of these breakpoints on the DNA map was determined by in situ and Southern hybridization. Further, we more precisely mapped the breakpoints of several deletions previously analyzed. The results permit us to delimit sequences essential to the known complementation groups in the region within approximately 20 kb in most cases. However, one gene, B16-1, is shown to contain essential sequences that span about 50 kb. Also, we demonstrate by overlapping deficiencies that a 45-kb DNA segment from the region, which includes one known complementation group, allows limited survival when deleted

    Mcp

    No full text

    The GAGA factor is required in the early Drosophila embryo not only for transcriptional regulation but also for nuclear division

    No full text
    The GAGA protein of Drosophila was first identified as a stimulatory factor in in vitro transcription assays using the engrailed and Ultrabithorax promoters. Subsequent studies have suggested that the GAGA factor promotes transcription by blocking the repressive effects of histones; moreover, it has been shown to function in chromatin remodeling, acting together with other factors in the formation of nuclease hypersensitive sites in vitro. The GAGA factor is encoded by the Trithorax-like locus and in the studies reported here we have used the maternal effect allele Trl13C to examine the functions of the protein during embryogenesis. We find that GAGA is required for the proper expression of a variety of developmental loci that contain GAGA binding sites in their upstream regulatory regions. The observed disruptions in gene expression are consistent with those expected for a factor involved in chromatin remodeling. In addition to facilitating gene expression, the GAGA factor appears to have a more global role in chromosome structure and function. This is suggested by the spectrum of nuclear cleavage cycle defects observed in Trl13C embryos. These defects include asynchrony in the cleavage cycles, failure in chromosome condensation, abnormal chromosome segregation and chromosome fragmentation. These defects are likely to be related to the association of the GAGA protein with heterochromatic satellite sequences which is observed throughout the cell cycle

    Modifiers of position-effect variegation in the region from 86C to 88B of the <i>Drosophila melanogaster</i> third chromosome

    No full text
    Four dominant suppressor and one enhancer of variegation loci were mapped in the polytene chromosome region extending from section 86C to section 88B of the Drosophila melanogaster third chromosome using a set of deficiencies. The suppressor locus Su-var(3)14 maps in 86CD, Su-var(3)13 in 86F4-7, Su-var(3)6 in 87B4-7 and Su-var(3)7 in 87E4-5. The enhancer locus E-var(3)3 maps in 87E12-F11. Su-var(3)13, Su-var(3)6 and Su-var(3)7 are also defined by point mutant alleles originally identified by other criteria (Reuter et al. 1986). Duplications covering the suppressor loci Su-var(3)14, Su-var(3)13, Su-var(3)6 and Su-var(3)7 were found to reduce considerably the haplo-abnormal effect of heterozygous point mutants of the corresponding loci. One suppressor locus, Su-var(3)7, maps within a region which has previously been cloned. The positions of deficiency breakpoints delimiting the suppressor locus indicate that all the necessary sequences for its function are located within 10 kb of cloned DNA
    corecore