76 research outputs found

    Genetic polymorphisms associated with the inflammatory response in bacterial meningitis

    Get PDF
    BACKGROUND Bacterial meningitis (BM) is an infectious disease that results in high mortality and morbidity. Despite efficacious antibiotic therapy, neurological sequelae are often observed in patients after disease. Currently, the main challenge in BM treatment is to develop adjuvant therapies that reduce the occurrence of sequelae. In recent papers published by our group, we described the associations between the single nucleotide polymorphisms (SNPs) AADAT +401C > T, APEX1 Asn148Glu, OGG1 Ser326Cys and PARP1 Val762Ala and BM. In this study, we analyzed the associations between the SNPs TNF -308G > A, TNF -857C > T, IL-8 -251A > T and BM and investigated gene-gene interactions, including the SNPs that we published previously. METHODS The study was conducted with 54 BM patients and 110 healthy volunteers (as the control group). The genotypes were investigated via primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) or polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. Allelic and genotypic frequencies were also associated with cytokine and chemokine levels, as measured with the x-MAP method, and cell counts. We analyzed gene-gene interactions among SNPs using the generalized multifactor dimensionality reduction (GMDR) method. RESULTS We did not find significant association between the SNPs TNF -857C > T and IL-8 -251A > T and the disease. However, a higher frequency of the variant allele TNF -308A was observed in the control group, associated with changes in cytokine levels compared to individuals with wild type genotypes, suggesting a possible protective role. In addition, combined inter-gene interaction analysis indicated a significant association between certain genotypes and BM, mainly involving the alleles APEX1 148Glu, IL8 -251 T and AADAT +401 T. These genotypic combinations were shown to affect cyto/chemokine levels and cell counts in CSF samples from BM patients. CONCLUSIONS In conclusion, this study revealed a significant association between genetic variability and altered inflammatory responses, involving important pathways that are activated during BM. This knowledge may be useful for a better understanding of BM pathogenesis and the development of new therapeutic approaches

    Clinical Use and Therapeutic Potential of IVIG/SCIG, Plasma-Derived IgA or IgM, and Other Alternative Immunoglobulin Preparations

    Get PDF
    Intravenous and subcutaneous immunoglobulin preparations, consisting of IgG class antibodies, are increasingly used to treat a broad range of pathological conditions, including humoral immune deficiencies, as well as acute and chronic inflammatory or autoimmune disorders. A plethora of Fab- or Fc-mediated immune regulatory mechanisms has been described that might act separately or in concert, depending on pathogenesis or stage of clinical condition. Attempts have been undertaken to improve the efficacy of polyclonal IgG preparations, including the identification of relevant subfractions, mild chemical modification of molecules, or modification of carbohydrate side chains. Furthermore, plasma-derived IgA or IgM preparations may exhibit characteristics that might be exploited therapeutically. The need for improved treatment strategies without increase in plasma demand is a goal and might be achieved by more optimal use of plasma-derived proteins, including the IgA and the IgM fractions. This article provides an overview on the current knowledge and future strategies to improve the efficacy of regular IgG preparations and discusses the potential of human plasma-derived IgA, IgM, and preparations composed of mixtures of IgG, IgA, and IgM

    Measuring elastase, proteinase 3 and cathepsin G activities at the surface of human neutrophils with fluorescence resonance energy transfer substrates

    No full text
    The neutrophil serine proteases (NSPs) elastase, proteinase 3 and cathepsin G are multifunctional proteases involved in pathogen destruction and the modulation of inflammatory processes. A fraction of secreted NSPs remains bound to the external plasma membrane, where they remain enzymatically active. This protocol describes the spectrofluorometric measurement of NSP activities on neutrophil surfaces using highly sensitive Abz-peptidyl-EDDnp fluorescence resonance energy transfer (FRET) substrates that fully discriminate between the three human NSPs. We describe FRET substrate synthesis, neutrophil purification and handling, and kinetic experiments on quiescent and activated cells. These are used to measure subnanomolar concentrations of membrane-bound or free NSPs in low-binding microplates and to quantify the activities of individual proteases in biological fluids like expectorations and bronchoalveolar lavages. the whole procedure, including neutrophil purification and kinetic measurements, can be done in 4-5 h and should not be longer because of the lifetime of neutrophils. Using this protocol will help identify the contributions of individual NSPs to the development of inflammatory diseases and may reveal these proteases to be targets for therapeutic inhibitors.Alexander von Humboldt FoundationGerman Research CouncilVaincre la MucoviscidoseFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Proteases & Vectorisat Pulm Fac Med, INSERM, U618, F-37032 Tours, FranceMax Planck Inst Neurobiol, Dept Neuroimmunol, D-82152 Planegg Martinsried, GermanyUniv Tours, F-37032 Tours, FranceUniversidade Federal de São Paulo, Escola Paulista Med, Dept Biofis, BR-0404420 São Paulo, BrazilINSERM, U921, F-37032 Tours, FranceUniversidade Federal de São Paulo, Escola Paulista Med, Dept Biofis, BR-0404420 São Paulo, BrazilWeb of Scienc
    corecore