3 research outputs found

    Rhaponticum acaule (L) DC essential oil: chemical composition, in vitro antioxidant and enzyme inhibition properties

    Get PDF
    Background: α-glucosidase is a therapeutic target for diabetes mellitus (DM) and α-glucosidase inhibitors play a vital role in the treatments for the disease. Furthermore, xanthine oxidase (XO) is a key enzyme that catalyzes hypoxanthine and xanthine to uric acid which at high levels can lead to hyperuricemia which is an important cause of gout. Pancreatic lipase (PL) secreted into the duodenum plays a key role in the digestion and absorption of fats. For its importance in lipid digestion, PL represents an attractive target for obesity prevention. Methods: The flowers essential oil of Rhaponticum acaule (L) DC (R. acaule) was characterized using gas chromatography-mass spectrometry (GC-MS). The antioxidant activities of R. acaule essential oil (RaEO) were also determined using 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), reducing power, phosphomolybdenum, and DNA nicking assays. The inhibitory power of RaEO against α-glucosidase, xanthine oxidase and pancreatic lipase was evaluated. Enzyme kinetic studies using Michaelis-Menten and the derived Lineweaver-Burk (LB) plots were performed to understand the possible mechanism of inhibition exercised by the components of this essential oil. Results: The result revealed the presence of 26 compounds (97.4%). The main constituents include germacrene D (49.2%), methyl eugenol (8.3%), (E)-β-ionone (6.2%), β-caryophyllene (5.7%), (E,E)-α-farnesene (4.2%), bicyclogermacrene (4.1%) and (Z)-α-bisabolene (3.7%). The kinetic inhibition study showed that the essential oil demonstrated a strong α-glucosidase inhibiton and it was a mixed inhibitor. On the other hand, our results evidenced that this oil exhibited important xanthine oxidase inhibitory effect, behaving as a non-competitive inhibitor. The essential oil inhibited the turkey pancreatic lipase, with maximum inhibition of 80% achieved at 2 mg/mL. Furthermore, the inhibition of turkey pancreatic lipase by RaEO was an irreversible one. Conclusion: The results revealed that the RaEO is a new promising potential source of antioxidant compounds, endowed with good practical applications for human health. Keywords: α-glucosidase, Antioxidant activity, Chemical composition, Pancreatic lipase inhibition, Rhaponticum acaule essential oil, Xanthine oxidase

    Microalgal cryopreservation using Dimethyl Sulfoxide (Me2SO) coupled with two freezing protocols : influence on the fatty acid profile

    No full text
    International audienceProcedures for determining the optimal pre-freezing protocol for cryo-preservation of microalgae are discussed. Three algal species were used (Chlorella vulgaris, Isochrysis galbana and Dunaliella salina) and cryo-stored using two different methods: the slow cooling and the fast freezing. In the slow cooling, each algae batch was treated with or without cryo-protectant (dimethyl sulfoxide: Me2SO 5% v/v). After 20 min at 4 degrees C, the midi-straws were filled and cooled slowly (1.5 degrees C min(-1)) to -140 degrees C, by a programmable freezer (Digitcool-IMV), before putting them directly into liquid nitrogen. Fast freezing was performed with 10% or 15% Me2SO prior to plunging into liquid nitrogen. The three algal species followed the same re-growth pattern as that of the controls. The post-thawed viability with Me2SO was good for all the selected algae (C. vulgaris > 95%, I. galbana and D. sauna > 70% of the control), applying the slow cooling. The post-thawed viability without Me2SO was 60% for I. galbana, 52% for D. salina and 33% for C. vulgaris. Fast freezing was not suitable for cryo-storage of I. galbana but gave good post-thawing viability for D. salina (70%). The decrease in fatty acid content of the cryo-stored algae was influenced by the temperature. The rapid decrease in temperature induced by fast freezing can explain the low level of fatty acid content of the three cryo-stored algae. Fatty acid profiles show that the nutritional values of the three cryo-stored micro-algae were not significantly affected especially when treated with slow cooling protocols

    Micro-algal cryopreservation using Dimethyl Sulfoxide (Me2SO) coupled with two freezing protocols: influence on the fatty acid profile

    No full text
    Procedures for determining the optimal pre-freezing protocol for cryo-preservation of microalgae are discussed. Three algal species were used (Chlorella vulgaris, Isochrysis galbana and Dunaliella salina) and cryo-stored using two different methods: the slow cooling and the fast freezing. In the slow cooling, each algae batch was treated with or without cryo-protectant (dimethyl sulfoxide: Me2SO 5% v/v). After 20 min at 4 degrees C, the midi-straws were filled and cooled slowly (1.5 degrees C min(-1)) to -140 degrees C, by a programmable freezer (Digitcool-IMV), before putting them directly into liquid nitrogen. Fast freezing was performed with 10% or 15% Me2SO prior to plunging into liquid nitrogen. The three algal species followed the same re-growth pattern as that of the controls. The post-thawed viability with Me2SO was good for all the selected algae (C. vulgaris > 95%, I. galbana and D. sauna > 70% of the control), applying the slow cooling. The post-thawed viability without Me2SO was 60% for I. galbana, 52% for D. salina and 33% for C. vulgaris. Fast freezing was not suitable for cryo-storage of I. galbana but gave good post-thawing viability for D. salina (70%). The decrease in fatty acid content of the cryo-stored algae was influenced by the temperature. The rapid decrease in temperature induced by fast freezing can explain the low level of fatty acid content of the three cryo-stored algae. Fatty acid profiles show that the nutritional values of the three cryo-stored micro-algae were not significantly affected especially when treated with slow cooling protocols
    corecore