15 research outputs found

    Integration of highly crystalline C8-BTBT thin-films into simple logic gates and circuits

    Get PDF
    Highly crystalline organic thin films possess the charge carrier mobilities needed for high-performance, low-cost flexible electronics. However, only few reports exist that show the integration of these films into short-channel organic circuits. This work describes the integration of highly crystalline layers of the thermally and chemically fragile small molecule C8-BTBT. Thin films of this material are processed by a combination of zone-casting and homoepitaxial vacuum evaporation and display an average charge carrier mobility of 7.5 cm2/V in long channel transistors. The integration of these films into a circuit technology based on a 5 μm channel-length bottom-gate bottom-contact transistor topology results in inverters with gains up to 40 as well as a robust 19-stage ring oscillator. This circuit requires the simultaneous operation of 80 TFTs and displays a stage delay of 40 μs, resulting in an operating frequency of 630 Hz at an operating voltage of 10 V. With the help of circuit modelling, we quantify the relationship between the speed of ring oscillators and the contact resistance of individual transistors. Indeed, the successful integration of highly-crystalline layers with high intrinsic mobility stresses the need for advances in contact engineering

    Predictive Model for the Meniscus-Guided Coating of High-Quality Organic Single-Crystalline Thin Films

    Get PDF
    A model that describes solvent evaporation dynamics in meniscus-guided coating techniques is developed. In combination with a single fitting parameter, it is shown that this formula can accurately predict a processing window for various coating conditions. Organic thin-film transistors (OTFTs), fabricated by a zone-casting setup, indeed show best performance at the predicted coating speeds with mobilities reaching 7 cm(2) V(-1) s(-1) .status: publishe

    Predicting the optimal process window for the coating of single-crystalline organic films with mobilities exceeding 7 cm2/Vs

    Get PDF
    Organic thin film transistors (OTFTs) based on single crystalline thin films of organic semiconductors have seen considerable development in the recent years. The most successful method for the fabrication of single crystalline films are solution-based meniscus guided coating techniques such as dip-coating, solution shearing or zone casting. These upscalable methods enable rapid and efficient film formation without additional processing steps. The single-crystalline film quality is strongly dependent on solvent choice, substrate temperature and coating speed. So far, however, process optimization has been conducted by trial and error methods, involving, for example, the variation of coating speeds over several orders of magnitude. Through a systematic study of solvent phase change dynamics in the meniscus region, we develop a theoretical framework that links the optimal coating speed to the solvent choice and the substrate temperature. In this way, we can accurately predict an optimal processing window, enabling fast process optimization. Our approach is verified through systematic OTFT fabrication based on films grown with different semiconductors, solvents and substrate temperatures. The use of best predicted coating speeds delivers state of the art devices. In the case of C8BTBT, OTFTs show well-behaved characteristics with mobilities up to 7 cm2/Vs and onset voltages close to 0 V. Our approach also explains well optimal recipes published in the literature. This route considerably accelerates parameter screening for all meniscus guided coating techniques and unveils the physics of single crystalline film formation.status: publishe

    High-performance single-crystal organic transistors on flex

    No full text
    status: publishe

    Highly Crystalline C8-BTBT Thin-Film Transistors by Lateral Homo-Epitaxial Growth on Printed Templates

    Get PDF
    Highly crystalline thin films of organic semiconductors offer great potential for fundamental material studies as well as for realizing high-performance, low-cost flexible electronics. The fabrication of these films directly on inert substrates is typically done by meniscus-guided coating techniques. The resulting layers show morphological defects that hinder charge transport and induce large device-to-device variability. Here, a double-step method for organic semiconductor layers combining a solution-processed templating layer and a lateral homo-epitaxial growth by a thermal evaporation step is reported. The epitaxial regrowth repairs most of the morphological defects inherent to meniscus-guided coatings. The resulting film is highly crystalline and features a mobility increased by a factor of three and a relative spread in device characteristics improved by almost half an order of magnitude. This method is easily adaptable to other coating techniques and offers a route toward the fabrication of high-performance, large-area electronics based on highly crystalline thin films of organic semiconductors.status: publishe

    Determination of crystal orientation in organic thin films using optical microscopy

    Get PDF
    The electrical behavior of devices based on highly crystalline thin films of organic semiconductors is inherently anisotropic. Thin film optimization requires simple and accessible means to characterize the orientation of the constituent crystals. The standard polarized light microscopy (PLM) provides a contrast between different crystallites but fails to distinguish crystals with relative orientation of 90°. In this paper, we discuss two methods that enable the unambiguous identification of crystal orientation in thin films of optically anisotropic materials: PLM with a full-wave retardation plate and differential interference contrast (DIC). The latter is standard on most microscopes and delivers images with high contrast and good color balance. As an illustration, we use DIC to extract the optical properties of highly crystalline thin films of three high-performance organic semiconductors: rubrene, 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT). Building on the relation between optical properties and crystal orientation, we demonstrate how DIC characterizes the in-plane crystal orientation of these thin films. This leads to the identification of the fast growth direction of the crystal front.publisher: Elsevier articletitle: Determination of crystal orientation in organic thin films using optical microscopy journaltitle: Organic Electronics articlelink: http://dx.doi.org/10.1016/j.orgel.2016.06.011 content_type: article copyright: © 2016 Elsevier B.V. All rights reserved.status: publishe
    corecore