13 research outputs found

    Importin β contains a COOH-terminal nucleoporin binding region important for nuclear transport

    Get PDF
    Proteins containing a classical NLS are transported into the nucleus by the import receptor importin β, which binds to cargoes via the adaptor importin α. The import complex is translocated through the nuclear pore complex by interactions of importin β with a series of nucleoporins. Previous studies have defined a nucleoporin binding region in the NH2-terminal half of importin β. Here we report the identification of a second nucleoporin binding region in its COOH-terminal half. Although the affinity of the COOH-terminal region for nucleoporins is dramatically weaker than that of the NH2-terminal region, sets of mutations that perturb the nucleoporin binding of either region reduce the nuclear import activity of importin β to a similar extent (∼50%). An importin β mutant with a combination of mutations in the NH2- and COOH-terminal regions is completely inactive for nuclear import. Thus, importin β possesses two nucleoporin binding sites, both of which are important for its nuclear import function

    Influence of cargo size on Ran and energy requirements for nuclear protein import

    Get PDF
    Previous work has shown that the transport of some small protein cargoes through the nuclear pore complex (NPC) can occur in vitro in the absence of nucleoside triphosphate hydrolysis. We now demonstrate that in the importin α/β and transportin import pathways, efficient in vitro transport of large proteins, in contrast to smaller proteins, requires hydrolyzable GTP and the small GTPase Ran. Morphological and biochemical analysis indicates that the presence of Ran and GTP allows large cargo to efficiently cross central regions of the NPC. We further demonstrate that this function of RanGTP at least partly involves its direct binding to importin β and transportin. We suggest that RanGTP functions in these pathways to promote the transport of large cargo by enhancing the ability of import complexes to traverse diffusionally restricted areas of the NPC

    Identification of a Small Molecule Inhibitor of Importin β Mediated Nuclear Import by Confocal On-Bead Screening of Tagged One-Bead One-Compound Libraries

    Get PDF
    In eukaryotic cells, proteins and RNAs are transported between the nucleus and the cytoplasm by nuclear import and export receptors. Over the past decade, small molecules that inhibit the nuclear export receptor CRM1 have been identified, most notably,leptomycin B. However, up to now no small molecule inhibitors of nuclear import have been described. Here we have used our automated confocal nanoscanning and bead picking method (CONA) for on-bead screening of a one-bead one-compound library to identify the first such import inhibitor, karyostatin 1A. Karyostatin 1A binds importin beta with high nanomolar affinity and specifically inhibits importin alpha/beta mediated nuclear import at low micromolar concentrations in vitro and in living cells, without perturbing transportin mediated nuclear import or CRM1 mediated nuclear export. Surface plasmon resonance binding-experiments suggest that karyostatin 1A acts by disrupting the interaction between importin p and the OPase Ran. As a selective inhibitor of the importin alpha/beta import pathway, karyostatin 1A will provide a valuable tool for future studies of nucleocytoplasmic trafficking.</p

    Flexible Positioning of the Telomerase-Associated Nuclease Leads to Preferential Elimination of Nontelomeric DNA

    Get PDF
    In addition to a reverse transcriptase activity, telomerase is associated with a DNA endonuclease that removes nucleotides from a primer 3′ terminus prior to telomere repeat addition. Here we examine the DNA specificity of the primer cleavage-elongation reaction carried out by the Euplotes crassus telomerase. We show that the primer cleavage activity copurified with the E. crassus telomerase polymerase, indicating that it either is an intrinsic property of telomerase or is catalyzed by a tightly associated factor. Using chimeric primers containing stretches of telomeric DNA that could be precisely positioned on the RNA template, we found that the cleavage site is more flexible than originally proposed. Primers harboring mismatches in dT tracts that aligned opposite nucleotides 37 to 40 in the RNA template were cleaved to eliminate the mismatched residues along with the adjacent 3′ sequence. The cleaved product was then elongated to generate perfect telomeric repeats. Mismatches in dG tracts were not removed, implying that the nuclease does not track coordinately with the polymerase active site. Our data indicate that the telomerase-associated nuclease could provide a rudimentary proofreading function in telomere synthesis by eliminating mismatches between the DNA primer and the 5′ region of the telomerase RNA template

    Cross-Talk between Snurportin1 Subdomains

    No full text
    The initial steps of spliceosomal small nuclear ribonucleoprotein (snRNP) maturation take place in the cytoplasm. After formation of an Sm-core and a trimethylguanosine (TMG) cap, the RNPs are transported into the nucleus via the import adaptor snurportin1 (SPN) and the import receptor importin-β. To better understand this process, we identified SPN residues that are required to mediate interactions with TMG caps, importin-β, and the export receptor, exportin1 (Xpo1/Crm1). Mutation of a single arginine residue within the importin-β binding domain (IBB) disrupted the interaction with importin-β, but preserved the ability of SPN to bind Xpo1 or TMG caps. Nuclear transport assays showed that this IBB mutant is deficient for snRNP import but that import can be rescued by addition of purified survival of motor neurons (SMN) protein complexes. Conserved tryptophan residues outside of the IBB are required for TMG binding. However, SPN can be imported into the nucleus without cargo. Interestingly, SPN targets to Cajal bodies when U2 but not U1 snRNPs are imported as cargo. SPN also relocalizes to Cajal bodies upon treatment with leptomycin B. Finally, we uncovered an interaction between the N- and C-terminal domains of SPN, suggesting an autoregulatory function similar to that of importin-α

    Study of an RNA helicase implicates small RNA–noncoding RNA interactions in programmed DNA elimination in Tetrahymena

    No full text
    Tetrahymena eliminates micronuclear-limited sequences from the developing macronucleus during sexual reproduction. Homology between the sequences to be eliminated and ∼28-nucleotide small RNAs (scnRNAs) associated with an Argonaute family protein Twi1p likely underlies this elimination process. However, the mechanism by which Twi1p–scnRNA complexes identify micronuclear-limited sequences is not well understood. We show that a Twi1p-associated putative RNA helicase Ema1p is required for the interaction between Twi1p and chromatin. This requirement explains the phenotypes of EMA1 KO strains, including loss of selective down-regulation of scnRNAs homologous to macronuclear-destined sequences, loss of H3K9 and K27 methylation in the developing new macronucleus, and failure to eliminate DNA. We further demonstrate that Twi1p interacts with noncoding transcripts derived from parental and developing macronuclei and this interaction is greatly reduced in the absence of Ema1p. We propose that Ema1p functions in DNA elimination by stimulating base-pairing interactions between scnRNAs and noncoding transcripts in both parental and developing new macronuclei
    corecore