127 research outputs found

    Non-equilibrium dynamics and phase transitions

    Full text link
    We study the poles of the retarded Green's functions of strongly coupled field theories exhibiting a variety of phase structures from a crossover up to a first order phase transition. These theories are modeled by a dual gravitational description. The poles of the holographic Green's functions appear at the frequencies of the quasinormal modes of the dual black hole background. We establish that near the transition, in all cases considered, the applicability of a hydrodynamic description breaks down already at lower momenta than in the conformal case. We establish the appearance of the spinodal region in the case of the first order phase transition at temperatures for which the speed of sound squared is negative. An estimate of the preferential scale attained by the unstable modes is also given. We additionally observe a novel diffusive regime for sound modes for a range of wavelengths.Comment: 5 pages, 4 figures. Some points are clarified. Typos corrtecte

    Conformal defects in supergravity - backreacted Dirac delta sources

    Get PDF
    We construct numerically gravitational duals of theories deformed by localized Dirac delta sources for scalar operators both at zero and at finite temperature. We find that requiring that the backreacted geometry preserves the original scale invariance of the source uniquely determines the potential for the scalar field to be the one found in a certain Kaluza-Klein compactification of 11D11D supergravity. This result is obtained using an efficient perturbative expansion of the backreacted background at zero temperature and is confirmed by a direct numerical computation. Numerical solutions at finite temperatures are obtained and a detailed discussion of the numerical approach to the treatment of the Dirac delta sources is presented. The physics of defect configurations is illustrated with a calculation of entanglement entropy.Comment: 23 pages, 12 figure

    Quasinormal modes and the phase structure of strongly coupled matter

    Get PDF
    We investigate the poles of the retarded Green's functions of strongly coupled field theories exhibiting a variety of phase structures from a crossover up to different first order phase transitions. These theories are modeled by a dual gravitational description. The poles of the holographic Green's functions appear at the frequencies of the quasinormal modes of the dual black hole background. We focus on quantifying linearized level dynamical response of the system in the critical region of phase diagram. Generically non-hydrodynamic degrees of freedom are important for the low energy physics in the vicinity of a phase transition. For a model with linear confinement in the meson spectrum we find degeneracy of hydrodynamic and non-hydrodynamic modes close to the minimal black hole temperature, and we establish a region of temperatures with unstable non-hydrodynamic modes in a branch of black hole solutions.Comment: 33 pages, 14 figure
    corecore