43 research outputs found

    Temporary Aortic By-pass By Means Of A Mechanical Device

    Get PDF

    Colon Interposition in the Management of Total Gastric and Esophageal Stricture Following Lye Ingestion

    No full text
    A case is presented in which ingestion of 300 CCS of liquid lye as a suicidal attempt resulted in caustic esophagogastritis, followed by a fibrotic process involving the entire esophagus and stomach down to the first portion of the duodenum. Successful colon bypass was performed from the cervical esophagus to the second portion of the duodenum

    Regional distribution of body fat in relation to DNA methylation within the LPL, ADIPOQ and PPARγ promoters in subcutaneous adipose tissue

    Get PDF
    Obesity may be related to differential DNA methylation and thus to differential expression of key genes in adipose tissue metabolism, such as LPL, ADIPOQ and PPARγ. Using subcutaneous adipose tissue (SAT) from 59 individuals of the European Prospective Investigation into Cancer and Nutrition–Potsdam study, we performed quantitative DNA methylation analysis within the promoters of LPL (LPL-CG1 and -CG2), ADIPOQ (ADIPOQ-CG1 and-CG2) and PPARγ (PPARγ-CG1). We then studied DNA methylation in relation to SAT gene expression, body composition measured using whole-body magnetic resonance imaging, body mass index (BMI), waist circumference (WC) and long-term changes in BMI and WC. For LPL-CG1 and LPL-CG2, higher methylation levels were associated with lower LPL expression, but with higher past WC gain. LPL-CG1 was also positively associated with BMI, WC, and visceral and subcutaneous fat mass. ADIPOQ-CG1 or -CG2 methylation exhibited no association with ADIPOQ expression or with anthropometric parameters. PPARγ-CG1 methylation was significantly higher in individuals with higher visceral fat mass. Among the investigated sites, LPL-CG1 methylation showed the strongest association with gene expression and regional body fat distribution, thereby possibly linking the degree of obesity with major metabolic processes in SAT

    Pil1 Controls Eisosome Biogenesis

    No full text
    The molecular composition of plasma membranes is constantly remodeled by endocytosis and exocytosis. Eisosomes are large cytoplasmic protein assemblies that localize to specialized domains on the yeast plasma membrane. They are of uniform size and immobile, and their disruption leads to large aberrant plasma membrane invaginations and endocytic defects. It is unknown how eisosomes are formed or inherited and what governs their size, distribution, and location. Here we show that eisosomes are formed de novo in the bud of dividing cells. They colonize newly formed membrane at a fixed density in a polarized wave proceeding from the bud neck to the bud tip and become anchored at the site of their formation. Pil1, one of the two main eisosome subunits, emerges as the central regulator of eisosome biogenesis that determines both size and location of eisosomes. Lowering Pil1 expression leads to normal-sized eisosomes at a reduced density, suggesting that eisosomes must be of a minimal size. Conversely, raising Pil1 expression leads to larger eisosomes at a fixed density, suggesting that under these conditions eisosome nucleation sites are limiting. Pil1 expression is regulated by the cell cycle, which synchronizes eisosome formation with plasma membrane growth. Our results establish a first framework of the molecular principles that define eisosome assembly and distribution
    corecore