12 research outputs found

    ADAMTS13: a new link between thrombosis and inflammation

    Get PDF
    von Willebrand factor (VWF) levels are elevated and a disintegrin-like and metalloprotease with thrombospondin type I repeats–13 (ADAMTS13) activity is decreased in both acute and chronic inflammation. We hypothesized that by cleaving hyperactive ultralarge VWF (ULVWF) multimers, ADAMTS13 down-regulates both thrombosis and inflammation. Using intravital microscopy, we show that ADAMTS13 deficiency results in increased leukocyte rolling on unstimulated veins and increased leukocyte adhesion in inflamed veins. Both processes were dependent on the presence of VWF. Depletion of platelets in Adamts13−/− mice reduced leukocyte rolling, suggesting that platelet interaction with ULVWF contributes to this process. Increased levels of endothelial P-selectin and plasma VWF in Adamts13−/− compared with wild-type (WT) mice indicated an elevated release of Weibel-Palade bodies. ULVWF multimers released upon stimulation with histamine, a secretagogue of Weibel-Palade bodies, slowed down leukocyte rolling in Adamts13−/− but not in WT mice. Furthermore, in inflammatory models, ADAMTS13 deficiency resulted in enhanced extravasation of neutrophils, and this process was also dependent on VWF. Our findings reveal an important role for ADAMTS13 in preventing excessive spontaneous Weibel-Palade body secretion, and in the regulation of leukocyte adhesion and extravasation during inflammation

    Elevated levels of homocysteine compromise blood-brain barrier integrity in mice

    No full text
    Elevated levels of plasma homocysteine (Hcy) correlate with increased risk of cardiovascular and Alzheimer diseases. We studied the effect of elevated Hcy on the blood-brain barrier (BBB) to explore the possibility of a vascular link between the 2 diseases. On a hyperhomocysteinemic diet, cystathionine beta-synthase (Cbs)–heterozygous mice develop hyperhomocysteinemia. Intravital microscopy analysis of the mesenteric venules showed that leukocyte rolling velocity was markedly decreased and numbers of adherent cells were increased in the mutant mice. This was due at least in part to increased expression of P-selectin. BBB permeability was measured by Evans blue dye permeation and was found to be 25% greater in the Cbs+/– cortex compared with wild-type controls. Our study suggests an important toxic effect of elevated Hcy on brain microvessels and implicates Hcy in the disruption of the BBB

    Peroxiredoxin1 prevents excessive endothelial activation and early atherosclerosis.

    No full text
    The peroxiredoxin (Prdx) family of antioxidant enzymes uses redox-active cysteines to reduce peroxides, lipid hydroperoxides, and peroxynitrites. Prdx1 is known to be important to protect red blood cells against reactive oxygen species and in tumor prevention. In this study, the role of Prdx1 in inflammation, thrombosis, and atherosclerosis was investigated. Using intravital microscopy, we showed that the number of leukocytes rolling per minute in unstimulated veins was increased by 2.5-fold in Prdx1(-/-) compared to Prdx1(+/+) mice. In Prdx1(-/-) mice, 50% of leukocytes rolled at a velocity <10 mum/sec compared with 10% in Prdx1(+/+) mice, suggesting that adhesion molecule density on the endothelium may have been increased by Prdx1 deficiency. Indeed, endothelial P-selectin, soluble P-selectin, and von Willebrand factor in plasma were increased in Prdx1(-/-) mice compared to Prdx1(+/+) mice, indicating elevated Weibel-Palade body release. In contrast to this excessive endothelial activation, Prdx1(-/-) platelets showed no sign of hyperreactivity, and their aggregation both in vitro and in vivo was normal. We also examined the role of Prdx1 in the apoE(-/-) murine spontaneous model of atherosclerosis. Prdx1(-/-)/apoE(-/-) mice fed normal chow developed larger, more macrophage-rich aortic sinus lesions than Prdx1(+/+)/apoE(-/-) mice, despite similar amounts and size distributions of cholesterol in their plasma lipoproteins. Thus, Prdx1 protects against excessive endothelial activation and atherosclerosis, and the Prdx1(-/-) mice could serve as an animal model susceptible to chronic inflammation
    corecore