12 research outputs found

    p-Type PVA/MWCNT-Sb<sub>2</sub>Te<sub>3</sub> Composites for Application in Different Types of Flexible Thermoelectric Generators in Combination with n-Type PVA/MWCNT-Bi<sub>2</sub>Se<sub>3</sub> Composites

    No full text
    This work is devoted to the fabrication of p-type polyvinyl alcohol (PVA)-based flexible thermoelectric composites using multiwall carbon nanotubes-antimony telluride (MWCNT-Sb2Te3) hybrid filler, the study of the thermoelectrical and mechanical properties of these composites, and the application of these composites in two types (planar and radial) of thermoelectric generators (TEG) in combination with the previously reported PVA/MWCNT-Bi2Se3 flexible thermoelectric composites. While the power factors of PVA/MWCNT-Sb2Te3 and PVA/MWCNT-Bi2Se3 composites with 15 wt.% filler were found to be similar, the PVA/MWCNT-Sb2Te3 composite with 25 wt.% filler showed a ~2 times higher power factor in comparison with the PVA/MWCNT-Bi2Se3 composites with 30 wt.% filler, which is attributed to its reduced electrical resistivity. In addition, developed PVA/MWCNT-Sb2Te3 composites showed a superior mechanical, electrical, and thermoelectric stability during 100 consequent bending cycles down to a 3 mm radius, with insignificant fluctuations of the resistance within 0.01% of the initial resistance value of the not bent sample. Demonstrated for the first time, 2-leg TEGs composed from p-type PVA/MWCNT-Sb2Te3 and n-type PVA/MWCNT-Bi2Se3 composites showed a stable performance under different external loads and showed their potential for applications involving low temperature gradients and power requirements in the range of nW

    Positive and Negative Changes in the Electrical Conductance Related to Hybrid Filler Distribution Gradient in Composite Flexible Thermoelectric Films Subjected to Bending

    No full text
    P-type multiwalled carbon nanotubes (MWCNTs), as well as heterostructures fabricated by direct deposition of inorganic thermoelectric materials as antimony and bismuth chalcogenides on MWCNT networks are known as perspective materials for application in flexible thermoelectric polymer-based composites. In this work, the electrical response of three types of Sb2Te3-MWCNT heterostructures-based flexible films—free standing on a flexible substrate, encapsulated in polydimethylsiloxane (PDMS), and mixed in polyvinyl alcohol (PVA) is studied in comparison with the flexible films prepared by the same methods using bare MWCNTs. The electrical conductance of these films when each side of it was subsequently subjected to compressive and tensile stress during the film bending down to a 3 mm radius is investigated in relation to the distribution gradient of Sb2Te3-MWCNT heterostructures or bare MWCNTs within the film. It is found that all investigated Sb2Te3-MWCNT films exhibit a reversible increase in the conductance in response to the compressive stress of the film side with the highest filler concentration and its decrease in response to the tensile stress. In contrast, free-standing and encapsulated bare MWCNT networks with uniform distribution of nanotubes showed a decrease in the conductance irrelevant to the bending direction. In turn, the samples with the gradient distribution of the MWCNTs, prepared by mixing the MWCNTs with PVA, revealed behavior that is similar to the Sb2Te3-MWCNT heterostructures-based films. The analysis of the processes impacting the changes in the conductance of the Sb2Te3-MWCNT heterostructures and bare MWCNTs is performed. The proposed in this work bending method can be applied for the control of the uniformity of distribution of components in heterostructures and fillers in polymer-based composites

    Nanostructured zinc oxide filler for modification of polymer-polymer composites: structure and tribological properties

    No full text
    Self-lubricating behaviour of materials is very demanded in industry. In this study we investigated the effect of anisometric nanostructured ZnO filler (tetrapod shaped particles with arm length of 70–100 nm and diameter of 10 nm) and ethylene-1-octene copolymer on structure and tribological properties of isotactic polypropylene (PP). It was observed that addition of EOC caused the increment of roughness as well as of the coefficient of friction (COF) of the investigated composites. Addition of ZnO, in its turn, caused decrement of the COF and improvement of surface quality at certain nanofiller contentsVytauto Didžiojo universitetasŽemės ūkio akademij

    Flexible N-Type Thermoelectric Composites Based on Non-Conductive Polymer with Innovative Bi<sub>2</sub>Se<sub>3</sub>-CNT Hybrid Nanostructured Filler

    No full text
    This research is devoted to the fabrication of polyvinyl alcohol (PVOH) based n-type thermoelectric composites with innovative hybrid bismuth selenide-multiwalled carbon nanotube (Bi2Se3-MWCNT) fillers for application in flexible thermoelectric devices. Hybrid fillers were synthesized by direct deposition of Bi2Se3 on multiwalled carbon nanotubes using a physical vapor deposition method, thus ensuring direct electrical contact between the carbon nanotubes and Bi2Se3. The Seebeck coefficient of prepared PVOH/Bi2Se3-MWCNT composites was found to be comparable with that for the Bi2Se3 thin films, reaching −100 µV·K−1 for the composite with 30 wt.% filler, and fluctuations of the resistance of these composites did not exceed 1% during 100 repetitive bending cycles down to 10 mm radius, indicating the good mechanical durability of these composites and proving their high potential for application in flexible thermoelectrics. In addition, other properties of the fabricated composites that are important for the use of polymer-based materials such as thermal stability, storage modulus and linear coefficient of thermal expansion were found to be improved in comparison with the neat PVOH

    Primary and secondary polymer nanocomposites for tribology and engineering

    No full text
    The current research comprises comparison of the investigations on primary and secondary polymer nanocomposites. Nanocomposites have been based on primary and recycled polymers, such as polypropylene (PP), ethylene-octene copolymer (EOC), acrylonitrile-butadiene-styrene terpolymer (ABS), polycarbonate (PC) and their blends, to develop perspective engineering materials, reinforced with nanosctructured inorganic fillers, such as montmorillonite clay (MMT) and zinc oxide (ZnO). It has been demonstrated that addition of either of the inorganic nanofillers allows improve mechanical, thermal and tribological properties of the polymer nanocomposites. It has been also demonstrated that secondary polymers (PP, ABS) can be successfully used for full or partial substation of primary polymers in the nanocomposites, without losing much of its performanceVytauto Didžiojo universitetasŽemės ūkio akademij
    corecore