7 research outputs found

    Electron Paramagnetic Resonance and Electron Spin Echo Studies of Co2+ Coordination by Nicotinamide Adenine Dinucleotide (NAD+) in Water Solution

    Get PDF
    Co(2+) binding to the nicotinamide adenine dinucleotide (NAD(+)) molecule in water solution was studied by electron paramagnetic resonance (EPR) and electron spin echo at low temperatures. Cobalt is coordinated by NAD(+) when the metal is in excess only, but even in such conditions, the Co/NAD(+) complexes coexist with Co(H(2)O)(6) complexes. EPR spin-Hamiltonian parameters of the Co/NAD(+) complex at 6 K are g(z) = 2.01, g(x) = 2.38, g(y) = 3.06, A(z) = 94 × 10(−4) cm(−1), A(x) = 33 × 10(−4) cm(−1) and A(y) = 71 × 10(−4) cm(−1). They indicate the low-spin Co(2+) configuration with S = 1/2. Electron spin echo envelope modulation spectroscopy with Fourier transform of the modulated spin echo decay shows a strong coordination by nitrogen atoms and excludes the coordination by phosphate and/or amide groups. Thus, Co(2+) ion is coordinated in pseudo-tetrahedral geometry by four nitrogen atoms of adenine rings of two NAD(+) molecules

    Vibronic Averaging Effect in ESEEM Spectra of (NH 4

    No full text

    PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock

    Get PDF
    BACKGROUND: In patients who have acute myocardial infarction with cardiogenic shock, early revascularization of the culprit artery by means of percutaneous coronary intervention (PCI) improves outcomes. However, the majority of patients with cardiogenic shock have multivessel disease, and whether PCI should be performed immediately for stenoses in nonculprit arteries is controversial. METHODS: In this multicenter trial, we randomly assigned 706 patients who had multivessel disease, acute myocardial infarction, and cardiogenic shock to one of two initial revascularization strategies: either PCI of the culprit lesion only, with the option of staged revascularization of nonculprit lesions, or immediate multivessel PCI. The primary end point was a composite of death or severe renal failure leading to renal-replacement therapy within 30 days after randomization. Safety end points included bleeding and stroke. RESULTS: At 30 days, the composite primary end point of death or renal-replacement therapy had occurred in 158 of the 344 patients (45.9%) in the culprit-lesion-only PCI group and in 189 of the 341 patients (55.4%) in the multivessel PCI group (relative risk, 0.83; 95% confidence interval [CI], 0.71 to 0.96; P=0.01). The relative risk of death in the culprit-lesion-only PCI group as compared with the multivessel PCI group was 0.84 (95% CI, 0.72 to 0.98; P=0.03), and the relative risk of renal-replacement therapy was 0.71 (95% CI, 0.49 to 1.03; P=0.07). The time to hemodynamic stabilization, the risk of catecholamine therapy and the duration of such therapy, the levels of troponin T and creatine kinase, and the rates of bleeding and stroke did not differ significantly between the two groups. CONCLUSIONS: Among patients who had multivessel coronary artery disease and acute myocardial infarction with cardiogenic shock, the 30-day risk of a composite of death or severe renal failure leading to renal-replacement therapy was lower among those who initially underwent PCI of the culprit lesion only than among those who underwent immediate multivessel PCI. (Funded by the European Union 7th Framework Program and others; CULPRIT-SHOCK ClinicalTrials.gov number, NCT01927549 .)

    PCI strategies in patients with acute myocardial infarction and cardiogenic shock

    Get PDF
    In patients who have acute myocardial infarction with cardiogenic shock, early revascularization of the culprit artery by means of percutaneous coronary intervention (PCI) improves outcomes. However, the majority of patients with cardiogenic shock have multivessel disease, and whether PCI should be performed immediately for stenoses in nonculprit arteries is controversial. In this multicenter trial, we randomly assigned 706 patients who had multivessel disease, acute myocardial infarction, and cardiogenic shock to one of two initial revascularization strategies: either PCI of the culprit lesion only, with the option of staged revascularization of nonculprit lesions, or immediate multivessel PCI. The primary end point was a composite of death or severe renal failure leading to renal-replacement therapy within 30 days after randomization. Safety end points included bleeding and stroke. At 30 days, the composite primary end point of death or renal-replacement therapy had occurred in 158 of the 344 patients (45.9%) in the culprit-lesion-only PCI group and in 189 of the 341 patients (55.4%) in the multivessel PCI group (relative risk, 0.83; 95% confidence interval [CI], 0.71 to 0.96; P=0.01). The relative risk of death in the culprit-lesion-only PCI group as compared with the multivessel PCI group was 0.84 (95% CI, 0.72 to 0.98; P=0.03), and the relative risk of renal-replacement therapy was 0.71 (95% CI, 0.49 to 1.03; P=0.07). The time to hemodynamic stabilization, the risk of catecholamine therapy and the duration of such therapy, the levels of troponin T and creatine kinase, and the rates of bleeding and stroke did not differ significantly between the two groups. Among patients who had multivessel coronary artery disease and acute myocardial infarction with cardiogenic shock, the 30-day risk of a composite of death or severe renal failure leading to renal-replacement therapy was lower among those who initially underwent PCI of the culprit lesion only than among those who underwent immediate multivessel PCI. (Funded by the European Union 7th Framework Program and others; CULPRIT-SHOCK ClinicalTrials.gov number, NCT01927549 .
    corecore