587 research outputs found

    Loading of a Bose-Einstein condensate in the boson-accumulation regime

    Full text link
    We study the optical loading of a trapped Bose-Einstein condensate by spontaneous emission of atoms in excited electronic state in the Boson-Accumulation Regime. We generalize the previous simplified analysis of ref. [Phys. Rev. A 53, 2466 (1996)], to a 3D case in which more than one trap level of the excited state trap is considered. By solving the corresponding quantum many-body master equation, we demonstrate that also for this general situation the photon reabsorption can help to increase the condensate fraction. Such effect could be employed to realize a continuous atom laser, and to overcome condensate losses.Comment: 7 pages, 5 eps figures, uses epl.st

    Continuous optical loading of a Bose-Einstein Condensate in the Thomas-Fermi regime

    Full text link
    We discuss the optical loading of a Bose-Einstein condensate in the Thomas-Fermi regime. The condensate is loaded via spontaneous emission from a reservoir of excited-state atoms. By means of a master equation formalism, we discuss the modification of the condensate temperature during the loading. We identify the threshold temperature, TthT_{th}, above (below) which the loading process leads to cooling (heating), respectively. The consequences of our analysis for the continuous loading of an atom laser are discussed.Comment: 7 pages, 3 figure

    Pumping two dilute gas Bose-Einstein condensates with Raman light scattering

    Full text link
    We propose an optical method for increasing the number of atoms in a pair of dilute gas Bose-Einstein condensates. The method uses laser-driven Raman transitions which scatter atoms between the condensate and non-condensate atom fractions. For a range of condensate phase differences there is destructive quantum interference of the amplitudes for scattering atoms out of the condensates. Because the total atom scattering rate into the condensates is unaffected the condensates grow. This mechanism is analogous to that responsible for optical lasing without inversion. Growth using macroscopic quantum interference may find application as a pump for an atom laser.Comment: 4 pages, no figure

    High resolution amplitude and phase gratings in atom optics

    Full text link
    An atom-field geometry is chosen in which an atomic beam traverses a field interaction zone consisting of three fields, one having frequency Ω=c/λ\Omega =c/\lambda propagating in the z^\hat{z} direction and the other two having frequencies Ω+δ1\Omega +\delta_{1} and Ω+δ2\Omega +\delta_{2} propagating in the -z^\hat{z} direction. For n1δ1+n2δ2=0n_{1}\delta_{1}+n_{2}\delta_{2}=0 and δ1T,δ2T1|\delta_{1}| T,|\delta_{2}| T\gg 1, where n1n_{1} and n2n_{2} are positive integers and TT is the pulse duration in the atomic rest frame, the atom-field interaction results in the creation of atom amplitude and phase gratings having period λ/[2(n1+n2)]% \lambda /[2(n_{1}+n_{2})]. In this manner, one can use optical fields having wavelength λ\lambda to produce atom gratings having periodicity much less than λ\lambda .Comment: 11 pages, 14 figure

    Continuous optical loading of a Bose-Einstein Condensate

    Get PDF
    The continuous pumping of atoms into a Bose-Einstein condensate via spontaneous emission from a thermal reservoir is analyzed. We consider the case of atoms with a three-level Λ\Lambda scheme, in which one of the atomic transitions has a very much shorter life-time than the other one. We found that in such scenario the photon reabsorption in dense clouds can be considered negligible. If in addition inelastic processes can be neglected, we find that optical pumping can be used to continuously load and refill Bose-Einstein condensates, i.e. provides a possible way to achieve a continuous atom laser.Comment: 12 pages, 8 figure

    Talbot Oscillations and Periodic Focusing in a One-Dimensional Condensate

    Full text link
    An exact theory for the density of a one-dimensional Bose-Einstein condensate with hard core particle interactions is developed in second quantization and applied to the scattering of the condensate by a spatially periodic impulse potential. The boson problem is mapped onto a system of free fermions obeying the Pauli exclusion principle to facilitate the calculation. The density exhibits a spatial focusing of the probability density as well as a periodic self-imaging in time, or Talbot effect. Furthermore, the transition from single particle to many body effects can be measured by observing the decay of the modulated condensate density pattern in time. The connection of these results to classical and atom optical phase gratings is made explicit

    Phase dynamics in a binary-collisions atom laser scheme

    Full text link
    Various aspects of the phase dynamics of an atom laser scheme based on binary collisions are investigated. Analytical estimates of the influence of elastic atom-atom collisions on the laser linewidth are given, and linewidths achievable in a recently proposed atom laser scheme [Phys. Rev. A 56, 2989 (1997)] are evaluated explicitly. The extent to which a relative phase can be established between two interfering atom lasers, as well as the properties of that phase, are also investigated.Comment: Revtex, 10 pages, 6 figure

    Factors affecting mechanical (nociceptive) thresholds in piglets

    Get PDF
    AbstractObjectiveTo evaluate the stability and repeatability of measures of mechanical (nociceptive) thresholds in piglets and to examine potentially confounding factors when using a hand held algometer.Study designDescriptive, prospective cohort.AnimalsForty-four piglets from four litters, weighing 4.6 ± 1.0 kg (mean ± SD) at 2 weeks of age.MethodsMechanical thresholds were measured twice on each of 2 days during the first and second week of life. Data were analyzed using a repeated measures design to test the effects of behavior prior to testing, sex, week, day within week, and repetition within day. The effect of body weight and the interaction between piglet weight and behaviour were also tested. Piglet was entered into the model as a random effect as an additional test of repeatability. The effect of repeated testing was used to test the stability of measures. Pearson correlations between repeated measures were used to test the repeatability of measures. Variance component analysis was used to describe the variability in the data.ResultsVariance component analysis indicated that piglet explained only 17% of the variance in the data. All variables in the model (behaviour prior to testing, sex, week, day within week, repetition within day, body weight, the interaction between body weight and behaviour, piglet identity) except sex had a significant effect (p < 0.04 for all). Correlations between repeated measures increased from the first to the second week.Conclusions and Clinical relevanceRepeatability was acceptable only during the second week of testing and measures changed with repeated testing and increased with increasing piglet weight, indicating that time (age) and animal body weight should be taken into account when measuring mechanical (nociceptive) thresholds in piglets. Mechanical (nociceptive) thresholds can be used both for testing the efficacy of anaesthetics and analgesics, and for assessing hyperalgesia in chronic pain states in research and clinical settings

    The steady state quantum statistics of a non-Markovian atom laser

    Full text link
    We present a fully quantum mechanical treatment of a single-mode atomic cavity with a pumping mechanism and an output coupling to a continuum of external modes. This system is a schematic description of an atom laser. In the dilute limit where atom-atom interactions are negligible, we have been able to solve this model without making the Born and Markov approximations. When coupling into free space, it is shown that for reasonable parameters there is a bound state which does not disperse, which means that there is no steady state. This bound state does not exist when gravity is included, and in that case the system reaches a steady state. We develop equations of motion for the two-time correlation in the presence of pumping and gravity in the output modes. We then calculate the steady-state output energy flux from the laser.Comment: 14 pages (twocloumn), 6 figure
    corecore