109 research outputs found

    Initial Estimates of Optical Constants of Mars Candidate Materials

    Get PDF
    Data obtained at visible and near-infrared wavelengths by OMEGA on Mars Express and CRISM on MRO provide definitive evidence for the presence of phyllosilicates and other hydrated phases on Mars. A diverse range of both Fe/Mg-OH and Al- OH-bearing phyllosilicates were identified including the smectites, nontronite, saponite, and montmorillonite. To constrain the abundances of these phyllosilicates, spectral analyses of mixtures are needed. We report on our effort to enable the quantitative evaluation of the abundance of hydrated-hydroxylated silicates when they are contained in mixtures. We include two component mixtures of hydrated/ hydroxylated silicates with each other and with two analogs for other Martian materials; pyroxene (enstatite) and palagonitic soil (an alteration product of basaltic glass, hereafter referred to as palagonite). For the hydrated-hydroxylated silicates we include saponite and montmorillonite (Mg- and Al-rich smectites). We prepared three size separates of each end-member for study: 20-45, 63-90, and 125-150 micron

    On-Going Laboratory Efforts to Quantitatively Address Clay Abundance on Mars

    Get PDF
    Data obtained at visible and near-infrared wavelengths by OMEGA on MarsExpress and CRISM on MRO provide definitive evidence for the presence of phyllosilicates and other hydrated phases on Mars. A diverse range of both Fe/Mg-OH and Al-OH-bearing phyllosilicates were identified including the smectites, nontronite, saponite, and montmorillonite. In order to constrain the abundances of these phyllosilicates spectral analyses of mixtures are needed. We report on our on-going effort to enable the quantitative evaluation of the abundance of hydrated-hydroxylated silicates when they are contained in mixtures. We include two component mixtures of hydrated/hydroxylated silicates with each other and with two analogs for other martian materials; pyroxene (enstatite) and palagonitic soil (an alteration product of basaltic glass). For the hydrated-hydroxylated silicates we include saponite and montmorillonite (Mg- and Al- rich smectites). We prepared three size separates of each end-member for study: 20-45, 63-90, and 125-150 m. As the second phase of our effort we used scanning electron microscopy imaging and x-ray diffraction to characterize the grain size distribution, and structural nature, respectively, of the mixtures. Visible and near-infrared reflectance spectra of the 63-90 micrometers grain size of the mixture samples are shown in Figure 1. We discuss the results of our measurements of these mixtures

    Orbital evidence for more widespread carbonate-bearing rocks on Mars

    Get PDF
    Carbonates are key minerals for understanding ancient Martian environments because they are indicators of potentially habitable, neutral-to-alkaline water and may be an important reservoir for paleoatmospheric CO_2. Previous remote sensing studies have identified mostly Mg-rich carbonates, both in Martian dust and in a Late Noachian rock unit circumferential to the Isidis basin. Here we report evidence for older Fe- and/or Ca-rich carbonates exposed from the subsurface by impact craters and troughs. These carbonates are found in and around the Huygens basin northwest of Hellas, in western Noachis Terra between the Argyre basin and Valles Marineris, and in other isolated locations spread widely across the planet. In all cases they cooccur with or near phyllosilicates, and in Huygens basin specifically they occupy layered rocks exhumed from up to ~5 km depth. We discuss factors that might explain their observed regional distribution, arguments for why carbonates may be even more widespread in Noachian materials than presently appreciated and what could be gained by targeting these carbonates for further study with future orbital or landed missions to Mars

    Multispectral Imaging from Mars PATHFINDER

    Get PDF
    The Imager for Mars Pathfinder (IMP) was a mast-mounted instrument on the Mars Pathfinder lander which landed on Mars Ares Vallis floodplain on July 4, 1997. During the 83 sols of Mars Pathfinders landed operations, the IMP collected over 16,600 images. Multispectral images were collected using twelve narrowband filters at wavelengths between 400 and 1000 nm in the visible and near infrared (VNIR) range. The IMP provided VNIR spectra of the materials surrounding the lander including rocks, bright soils, dark soils, and atmospheric observations. During the primary mission, only a single primary rock spectral class, Gray Rock, was recognized; since then, Black Rock, has been identified. The Black Rock spectra have a stronger absorption at longer wavelengths than do Gray Rock spectra. A number of coated rocks have also been described, the Red and Maroon Rock classes, and perhaps indurated soils in the form of the Pink Rock class. A number of different soil types were also recognized with the primary ones being Bright Red Drift, Dark Soil, Brown Soil, and Disturbed Soil. Examination of spectral parameter plots indicated two trends which were interpreted as representing alteration products formed in at least two different environmental epochs of the Ares Vallis area. Subsequent analysis of the data and comparison with terrestrial analogs have supported the interpretation that the rock coatings provide evidence of earlier martian environments. However, the presence of relatively uncoated examples of the Gray and Black rock classes indicate that relatively unweathered materials can persist on the martian surface

    Multiple mineral horizons in layered outcrops at Mawrth Vallis, Mars, signify changing geochemical environments on early Mars

    Get PDF
    Refined calibrations of CRISM images are enabling identification of smaller deposits of unique aqueous materials on Mars that reveal changing environmental conditions at the region surrounding Mawrth Vallis. Through characterization of these clay-sulfate assemblages and their association with the layered, phyllosilicate units of this region, more details of the aqueous geochemical history can be gleaned. A stratigraphy including five distinct mineral horizons is mapped using compositional data from CRISM over CTX and HRSC imagery across 100s of km and from CRISM over HiRISE imagery across 100s of meters. Transitions in mineralogic units were characterized using visible/near-infrared (VNIR) spectral properties and surface morphology. We identified and characterized complex “doublet” type spectral signatures with two bands between 2.2 and 2.3 μm at one stratigraphic horizon. Based on comparisons with terrestrial sites, the spectral “doublet” unit described here may reflect the remnants of a salty, evaporative period that existed on Mars during the transition from formation of Fe-rich phyllosilicates to Al-rich phyllosilicates. Layered outcrops observed at Mawrth Vallis are thicker than in other altered regions of Mars, but may represent processes that were more widespread in wet regions of the planet during its early history. The aqueous geochemical environments supporting the outcrops observed here include: (i) the formation of Fe3+-rich smectites in a warm and wet environment, (ii) overlain by a thin ferrous-bearing clay unit that could be associated with heating or reducing conditions, (iii) followed by a transition to salty and/or acidic alteration phases and sulfates (characterized by the spectral “doublet” shape) in an evaporative setting, (iv) formation of Al-rich phyllosilicates through pedogenesis or acid leaching, and (v) finally persistence of poorly crystalline aluminosilicates marking the end of the warm climate on early Mars. The “doublet” type units described here are likely composed of clay-sulfate assemblages formed in saline, acidic evaporative environments similar to those found in Western Australia and the Atacama desert. Despite the chemically extreme and variable waters present at these terrestrial, saline lake environments, active ecosystems are present; thus, these “doublet” type units may mark exciting areas for continued exploration important to astrobiology on Mars

    Visible, Near-Infrared, and Mid-Infrared Spectral Characterization of Hawaiian Fumarolic Alteration Near Kilauea's December 1974 Flow: Implications for Spectral Discrimination of Alteration Environments on Mars

    Get PDF
    The December 1974 flow in the SW rift zone at Kilauea Volcano, Hawaii, has been established as a Mars analog due to its physical, chemical, and morphological properties, as well as its interaction with the outgassing plume from the primary Kilauea caldera. We focus on a solfatara site that consists of hydrothermally altered basalt and alteration products deposited in and around a passively degassing volcanic vent situated directly adjacent to the December 1974 flow on its northwest side. Reflectance spectra are acquired in the visible/near-infrared (VNIR) region and emission spectra in the mid-infrared (MIR) range to better understand the spectral properties of hydrothermally altered materials. The VNIR signatures are consistent with silica, Fe-oxides, and sulfates (Ca, Fe). Primarily silica-dominated spectral signatures are observed in the MIR and changes in spectral features between samples appear to be driven by grain size effects in this wavelength range. The nature of the sample coating and the thermal emission signatures exhibit variations that may be correlated with distance from the vent. Chemical analyses indicate that most surfaces are characterized by silica-rich material, Fe-oxides, and sulfates (Ca, Fe). The silica and Fe-oxide-dominated MIR/VNIR spectral signatures exhibited by the hydrothermally altered material in this study are distinct from the sulfate-dominated spectral signatures exhibited by previously studied low-temperature aqueous acid-sulfate weathered basaltic glass. This likely reflects a difference in open vs. closed system weathering, where mobile cations are removed from the altered surfaces in the fumarolic setting. This work provides a unique infrared spectral library that includes martian analog materials that were altered in an active terrestrial solfatara (hydrothermal) setting. Hydrothermal environments are of particular interest as they potentially indicate habitable conditions. Key constraints on the habitability and astrobiological potential of ancient aqueous environments are provided through detection and interpretation of secondary mineral assemblages; thus, spectral detection of fumarolic alteration assemblages observed from this study on Mars would suggest a region that could have hosted a habitable environment

    Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate

    Get PDF
    Mawrth Vallis contains one of the largest exposures of phyllosilicates on Mars. Nontronite, montmorillonite, kaolinite, and hydrated silica have been identified throughout the region using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). In addition, saponite has been identified in one observation within a crater. These individual minerals are identified and distinguished by features at 1.38–1.42, ∼1.91, and 2.17–2.41 μm. There are two main phyllosilicate units in the Mawrth Vallis region. The lowermost unit is nontronite bearing, unconformably overlain by an Al-phyllosilicate unit containing montmorillonite plus hydrated silica, with a thin layer of kaolinite plus hydrated silica at the top of the unit. These two units are draped by a spectrally unremarkable capping unit. Smectites generally form in neutral to alkaline environments, while kaolinite and hydrated silica typically form in slightly acidic conditions; thus, the observed phyllosilicates may reflect a change in aqueous chemistry. Spectra retrieved near the boundary between the nontronite and Al-phyllosilicate units exhibit a strong positive slope from 1 to 2 μm, likely from a ferrous component within the rock. This ferrous component indicates either rapid deposition in an oxidizing environment or reducing conditions. Formation of each of the phyllosilicate minerals identified requires liquid water, thus indicating a regional wet period in the Noachian when these units formed. The two main phyllosilicate units may be extensive layers of altered volcanic ash. Other potential formational processes include sediment deposition into a marine or lacustrine basin or pedogenesis

    Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration

    Get PDF
    The Noachian terrain west of the Isidis basin hosts a diverse collection of alteration minerals in rocks comprising varied geomorphic units within a 100,000 km2 region in and near the Nili Fossae. Prior investigations in this region by the Observatoire pour l'Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) instrument on Mars Express revealed large exposures of both mafic minerals and iron magnesium phyllosilicates in stratigraphic context. Expanding on the discoveries of OMEGA, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter (MRO) has found more spatially widespread and mineralogically diverse alteration minerals than previously realized, which represent multiple aqueous environments. Using CRISM near-infrared spectral data, we detail the basis for identification of iron and magnesium smectites (including both nontronite and more Mg-rich varieties), chlorite, prehnite, serpentine, kaolinite, potassium mica (illite or muscovite), hydrated (opaline) silica, the sodium zeolite analcime, and magnesium carbonate. The detection of serpentine and analcime on Mars is reported here for the first time. We detail the geomorphic context of these minerals using data from high-resolution imagers onboard MRO in conjunction with CRISM. We find that the distribution of alteration minerals is not homogeneous; rather, they occur in provinces with distinctive assemblages of alteration minerals. Key findings are (1) a distinctive stratigraphy, in and around the Nili Fossae, of kaolinite and magnesium carbonate in bedrock units always overlying Fe/Mg smectites and (2) evidence for mineral phases and assemblages indicative of low-grade metamorphic or hydrothermal aqueous alteration in cratered terrains. The alteration minerals around the Nili Fossae are more typical of those resulting from neutral to alkaline conditions rather than acidic conditions, which appear to have dominated much of Mars. Moreover, the mineralogic diversity and geologic context of alteration minerals found in the region around the Nili Fossae indicates several episodes of aqueous activity in multiple distinct environments

    Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars

    Get PDF
    Observations by the Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars in the Mawrth Vallis region show several phyllosilicate species, indicating a wide range of past aqueous activity. Iron/magnesium (Fe/Mg)–smectite is observed in light-toned outcrops that probably formed via aqueous alteration of basalt of the ancient cratered terrain. This unit is overlain by rocks rich in hydrated silica, montmorillonite, and kaolinite that may have formed via subsequent leaching of Fe and Mg through extended aqueous events or a change in aqueous chemistry. A spectral feature attributed to an Fe^(2+) phase is present in many locations in the Mawrth Vallis region at the transition from Fe/Mg-smectite to aluminum/silicon (Al/Si)–rich units. Fe^(2+)-bearing materials in terrestrial sediments are typically associated with microorganisms or changes in pH or cations and could be explained here by hydrothermal activity. The stratigraphy of Fe/Mg-smectite overlain by a ferrous phase, hydrated silica, and then Al-phyllosilicates implies a complex aqueous history
    corecore