18,387 research outputs found
On the Penrose Inequality for general horizons
For asymptotically flat initial data of Einstein's equations satisfying an
energy condition, we show that the Penrose inequality holds between the ADM
mass and the area of an outermost apparent horizon, if the data are restricted
suitably. We prove this by generalizing Geroch's proof of monotonicity of the
Hawking mass under a smooth inverse mean curvature flow, for data with
non-negative Ricci scalar. Unlike Geroch we need not confine ourselves to
minimal surfaces as horizons. Modulo smoothness issues we also show that our
restrictions on the data can locally be fulfilled by a suitable choice of the
initial surface in a given spacetime.Comment: 4 pages, revtex, no figures. Some comments added. No essential
changes. To be published in Phys. Rev. Let
Putative spin liquid in the triangle-based iridate BaIrTiO
We report on thermodynamic, magnetization, and muon spin relaxation
measurements of the strong spin-orbit coupled iridate BaIrTiO,
which constitutes a new frustration motif made up a mixture of edge- and
corner-sharing triangles. In spite of strong antiferromagnetic exchange
interaction of the order of 100~K, we find no hint for long-range magnetic
order down to 23 mK. The magnetic specific heat data unveil the -linear and
-squared dependences at low temperatures below 1~K. At the respective
temperatures, the zero-field muon spin relaxation features a persistent spin
dynamics, indicative of unconventional low-energy excitations. A comparison to
the isostructural compound BaRuTiO suggests that a concerted
interplay of compass-like magnetic interactions and frustrated geometry
promotes a dynamically fluctuating state in a triangle-based iridate.Comment: Physical Review B accepte
Model-Based Edge Detector for Spectral Imagery Using Sparse Spatiospectral Masks
Two model-based algorithms for edge detection in spectral imagery are developed that specifically target capturing intrinsic features such as isoluminant edges that are characterized by a jump in color but not in intensity. Given prior knowledge of the classes of reflectance or emittance spectra associated with candidate objects in a scene, a small set of spectral-band ratios, which most profoundly identify the edge between each pair of materials, are selected to define a edge signature. The bands that form the edge signature are fed into a spatial mask, producing a sparse joint spatiospectral nonlinear operator. The first algorithm achieves edge detection for every material pair by matching the response of the operator at every pixel with the edge signature for the pair of materials. The second algorithm is a classifier-enhanced extension of the first algorithm that adaptively accentuates distinctive features before applying the spatiospectral operator. Both algorithms are extensively verified using spectral imagery from the airborne hyperspectral imager and from a dots-in-a-well midinfrared imager. In both cases, the multicolor gradient (MCG) and the hyperspectral/spatial detection of edges (HySPADE) edge detectors are used as a benchmark for comparison. The results demonstrate that the proposed algorithms outperform the MCG and HySPADE edge detectors in accuracy, especially when isoluminant edges are present. By requiring only a few bands as input to the spatiospectral operator, the algorithms enable significant levels of data compression in band selection. In the presented examples, the required operations per pixel are reduced by a factor of 71 with respect to those required by the MCG edge detector
Permutation sampling in Path Integral Monte Carlo
A simple algorithm is described to sample permutations of identical particles
in Path Integral Monte Carlo (PIMC) simulations of continuum many-body systems.
The sampling strategy illustrated here is fairly general, and can be easily
incorporated in any PIMC implementation based on the staging algorithm.
Although it is similar in spirit to an existing prescription, it differs from
it in some key aspects. It allows one to sample permutations efficiently, even
if long paths (e.g., hundreds, or thousands of slices) are needed. We
illustrate its effectiveness by presenting results of a PIMC calculation of
thermodynamic properties of superfluid Helium-four, in which a very simple
approximation for the high-temperature density matrix was utilized
Magnetic Domain Patterns Depending on the Sweeping Rate of Magnetic Fields
The domain patterns in a thin ferromagnetic film are investigated in both
experiments and numerical simulations. Magnetic domain patterns under a zero
field are usually observed after an external magnetic field is removed. It is
demonstrated that the characteristics of the domain patterns depend on the
decreasing rate of the external field, although it can also depend on other
factors. Our numerical simulations and experiments show the following
properties of domain patterns: a sea-island structure appears when the field
decreases rapidly from the saturating field to the zero field, while a
labyrinth structure is observed for a slowly decreasing field. The mechanism of
the dependence on the field sweeping rate is discussed in terms of the concepts
of crystallization.Comment: 4 pages, 3 figure
Double polarization hysteresis loop induced by the domain pinning by defect dipoles in HoMnO3 epitaxial thin films
We report on antiferroelectriclike double polarization hysteresis loops in
multiferroic HoMnO3 thin films below the ferroelectric Curie temperature. This
intriguing phenomenon is attributed to the domain pinning by defect dipoles
which were introduced unintentionally during film growth process. Electron
paramagnetic resonance suggests the existence of Fe1+ defects in thin films and
first principles calculations reveal that the defect dipoles would be composed
of oxygen vacancy and Fe1+ defect. We discuss migration of charged point
defects during film growth process and formation of defect dipoles along
ferroelectric polarization direction, based on the site preference of point
defects. Due to a high-temperature low-symmetry structure of HoMnO3, aging is
not required to form the defect dipoles in contrast to other ferroelectrics
(e.g., BaTiO3).Comment: 4 figure
- …