19 research outputs found

    RPH1 and GIS1 Are Damage-Responsive Repressors of PHR1

    Get PDF
    The Saccharomyces cerevisiae DNA repair gene PHR1 encodes a photolyase that catalyzes the light-dependent repair of pyrimidine dimers. PHR1 expression is induced at the level of transcription by a variety of DNA-damaging agents. The primary regulator of the PHR1 damage response is a 39-bp sequence called URSPHR1 which is the binding site for a protein(s) that constitutes the damage-responsive repressor PRP. In this communication, we report the identification of two proteins, Rph1p and Gis1p, that regulate PHR1 expression through URSPHR1. Both proteins contain two putative zinc fingers that are identical throughout the DNA binding region, and deletion of both RPH1 and GIS1 is required to fully derepress PHR1 in the absence of damage. Derepression of PHR1 increases the rate and extent of photoreactivation in vivo, demonstrating that the damage response of PHR1 enhances cellular repair capacity. In vitro footprinting and binding competition studies indicate that the sequence AG4 (C4T) within URSPHR1 is the binding site for Rph1p and Gis1p and suggests that at least one additional DNA binding component is present in the PRP complex

    Sumoylation of the histone demethylase KDM4A is required for binding to tumor suppressor p53 in HCT116 colon cancer cell lines

    No full text
    The histone demethylase lysine-specific demethylase 4A (KDM4A/Jmjd2A) has diverse functions, including involvement in gene regulation and cell cycle, and plays an oncogenic role in cancer cells. The modulation of KDM4A through post-translational modifications remains unclear. Here, we show that small ubiquitin-like modifier (SUMO) 1-mediated modification of KDM4A was required for interaction with tumor suppressor p53. Our data revealed that KDM4A is mainly sumoylated at lysine residue 471. However, the SUMO modification resulted in little change in subcellular localization, demethylase activity, or protein stability of KMD4A. Intriguingly, co-immunoprecipitation data revealed that sumoylation-defective mutants of KDM4A had a lower binding ability with p53 compared to that of wild-type KDM4A, suggesting a positive role for sumoylation in the interaction between KDM4A and p53. Together, these data suggest that KDM4A is post-translationally modified by SUMO, and this sumoylation may be a novel regulatory switch for controlling the interplay between KDM4A and p53

    Two Ubiquitin-Conjugating Enzymes, Rhp6 and UbcX, Regulate Heterochromatin Silencing in Schizosaccharomyces pombe

    No full text
    Methylation of histone H3 has been linked to the assembly of higher-order chromatin structures. Very recently, several examples, including the Schizosaccharomyces pombe mating-type region, chicken β-globin locus, and inactive X-chromosome, revealed that H3-Lys9-methyl (Me) is associated with silent chromatin while H3-Lys4-Me is prominent in active chromatin. Surprisingly, it was shown that homologs of Drosophila Su(var)3-9 specifically methylate the Lys9 residue of histone H3. Here, to identify putative enzymes responsible for destabilization of heterochromatin, we screened genes whose overexpressions disrupt silencing at the silent mat3 locus in fission yeast. Interestingly, we identified two genes, rhp6(+) and ubcX(+) (ubiquitin-conjugating enzyme participating in silencing), both of which encode ubiquitin-conjugating enzymes. Their overexpression disrupted silencing at centromeres and telomeres as well as at mat3. Additionally, the overexpression interfered with centromeric function, as confirmed by elevated minichromosome loss and antimicrotubule drug sensitivity. On the contrary, deletion of rhp6(+) or ubcX(+) enhanced silencing at all heterochromatic regions tested, indicating that they are negative regulators of silencing. More importantly, chromatin immunoprecipitation showed that their overexpression alleviated the level of H3-Lys9-Me while enhancing the level of H3-Lys4-Me at the silent regions. On the contrary, their deletions enhanced the level of H3-Lys9-Me while alleviating that of H3-Lys4-Me. Taken together, the data suggest that two ubiquitin-conjugating enzymes, Rhp6 and UbcX, affect methylation of histone H3 at silent chromatin, which then reconfigures silencing

    The stress-activated MAP kinase Sty1/Spc1 and a 3′-regulatory element mediate UV-induced expression of the uvi15(+) gene at the post-transcriptional level

    Get PDF
    Exposure of Schizosaccharomyces pombe cells to UV light results in increased uvi15(+) gene expression at both the mRNA and protein levels, leading to elevated cell survival. This UV-induced expression of the uvi15(+) gene was reduced in Δsty1 and Δwis1 cells lacking the stress-activated protein kinase pathway, but not in DNA damage checkpoint mutants. To further understand the cellular mechanisms responsible for this UV-induced expression, the transcription rate and mRNA half-life were investigated. Transcription run-on assays revealed that the rate of uvi15(+) transcription was increased 1.8-fold regardless of Sty1 when cells were UV irradiated. The half-life of uvi15(+) mRNA was also increased 1.5-fold after UV irradiation, but it was decreased in the Δsty1 background for both basal and UV-induced mRNAs, indicating that the stress-activated MAPK cascade can mediate UV-induced gene expression by increasing mRNA half-life. Deletion analyses identified a 54 nt element downstream of the distal poly(A) site, which was involved in the increased half-life of uvi15(+) mRNA. These results suggest that both Sty1 and the 3′-regulatory element regulate UV-induced expression of the uvi15(+) gene at the post-transcriptional level

    Higher Serum Total Cholesterol to High-Density Lipoprotein Cholesterol Ratio Is Associated with Increased Mortality among Incident Peritoneal Dialysis Patients

    No full text
    This study evaluated the association of the serum total cholesterol to high-density lipoprotein cholesterol ratio (TC/HDL-C) with mortality in incident peritoneal dialysis (PD) patients. We performed a multi-center, prospective cohort study of 630 incident PD patients from 2008 to 2015 in Korea. Participants were stratified into quintiles according to baseline TC, HDL-C, LDL-C and TC/HDL-C. The association between mortality and each lipid profile was evaluated using multivariate Cox regression analysis. During a median follow-up period of 70.3 ± 25.2 months, 185 deaths were recorded. The highest TC/HDL-C group had the highest body mass index, percentage of diabetes and serum albumin level. Multivariate analysis demonstrated that the highest quintile of TC/HDL-C was associated with increased risk of all-cause mortality (hazard ratio 1.69, 95% confidence interval 1.04–2.76; p = 0.036), whereas TC, HDL-C and LDL-C were not associated with mortality. Linear regression analysis showed a positive correlation between TC/HDL-C and body mass index. Increased serum TC/HDL-C was an independent risk factor for mortality in the subgroup of old age, female, cardiovascular disease and low HDL-C. The single lipid marker of TC or HDL-C was not able to predict mortality in PD patients. However, increased serum TC/HDL-C was independently associated with all-cause mortality in PD patients
    corecore