3 research outputs found

    Imaging the P‐Wave Velocity Structure of Arctic Subsea Permafrost Using Laplace‐Domain Full‐Waveform Inversion

    Get PDF
    Climate change in the Arctic has recently become a major scientific issue, and detailed information on the degradation of subsea permafrost on continental shelves in the Arctic is critical for understanding the major cause and effects of global warming, especially the release of greenhouse gases. The subsea permafrost at shallow depths beneath the Arctic continental shelves has significantly higher P‐wave velocities than the surrounding sediments. The distribution of subsea permafrost on Arctic continental shelves has been studied since the 1970s using seismic refraction methods. With seismic refraction data, the seismic velocity and the depth of the upper boundary of subsea permafrost can be determined. However, it is difficult to identify the lower boundary and the internal shape of permafrost. Here, we present two‐dimensional P‐wave velocity models of the continental shelf in the Beaufort Sea by applying the Laplace‐domain full‐waveform inversion method to acquired multichannel seismic reflection data. With the inverted P‐wave velocity model, we identify anomalous high seismic velocities that originated from the subsea permafrost. Information on the two‐dimensional distribution of subsea permafrost on the Arctic continental shelf area, including the upper and lower bounds of subsea permafrost, are presented. Also, the two‐dimensional P‐wave velocity model allows us to estimate the thawing pattern and the shape of subsea permafrost structures. Our proposed P‐wave velocity models were verified by comparison with the previous distribution map of subsea permafrost from seismic refraction analyses, geothermal modeling, and well‐log data

    Comparison of scaling methods for waveform inversion

    No full text
    Waveform inversion can lead to faint images for later times due to geometrical spreading. The proper scaling of the steepest-descent direction can enhance faint images in waveform inversion results. We compare the effects of different scaling techniques in waveform inversion algorithms using the steepest-descent method. For the scaling method we use the diagonal of the pseudo-Hessian matrix, which can be applied in two different ways. One is to scale the steepest-descent direction at each frequency independently. The other is to scale the steepest-descent direction summed over the entire frequency band. The first method equalizes the steepest-descent directions at different frequencies and minimizes the effects of the band-limited source spectrum in waveform inversion. In the second method, since the steepest-descent direction summed over the entire frequency band is divided by the diagonal of the pseudo-Hessian matrix summed over the entire frequency band, the band-limited property of the source wavelet spectrum still remains in the scaled steepest-descent directions. The two scaling methods were applied to both standard and logarithmic waveform inversion. For standard waveform inversion, the method that scales the steepest-descent direction at every frequency step gives better results than the second method. On the other hand, logarithmic waveform inversion is not sensitive to the scaling method, because taking the logarithm of wavefields automatically means that results for the steepest-descent direction at each frequency are commensurate with each other. If once the steepest-descent directions are equalized by taking the logarithm of wavefields in logarithmic waveform inversion, the additional equalizing effects by the scaling method are not as great as in conventional waveform inversion.This work was financially supported by the Brain Korea 21 project of the Ministry of Education, the National Research Laboratory Project of theMinistry of Science and Technology and grant nos. PM50101 and PM46401 from the Korea Ocean Research and Development Institute

    P-wave velocity models of continental shelf of East Siberian Sea using the Laplace-domain full waveform inversion

    No full text
    2016 IBRV ARAON Arctic Cruise Leg-2, Expedition ARA07C was a multidisciplinary undertaking carried out in the East Siberian Sea (ESS) from August 25 to September 10, 2016. The program was conducted as a collaboration between the Korea Polar Research Institute (KOPRI), P.P. Shirshov Institute of Oceanology (IORAS), and Alfred Wegener Institute (AWI). During this expedition, the multi-channel seismic (MCS) data were acquired on the continental shelf and the upper slope of the ESS, totaling 3 lines with 660 line-kilometers. The continental shelf of ESS is one of the widest shelf seas in the world and it is believed to cover the largest area of sub-sea permafrost in the Arctic. According to the present knowledge of the glacial history of the western Arctic Ocean, it is likely that during the LGM with a sea level approximately 120 m below present, the entire shelf area of the ESS was exposed to very cold air temperatures so that thick permafrost should have formed. Indeed, in water depths shallower than 80 m, sub-bottom profiles in the ESS recorded from the shelf edge to a latitude of 74°30' N in 60 m water depth exhibited acoustic facies, suggesting that at least relicts of submarine permafrost are present. In order to identify the existence and/or non-existence of subsea permafrost in our study area, we analyze the MCS data using the Laplace domain full waveform inversion (FWI). In case of the Canadian continental shelf of the Beaufort Sea, subsea permafrost has high seismic velocity values (over 2.6 km/sec) and strong refraction events were found in the MCS shotgathers. However, in the EES our proposed P-wave velocity models derived from FWI have neither found high velocity structures (over 2.6 km/sec) nor indicate strong refraction events by subsea permafrost. Instead, in 300 m depth below sea floor higher P-wave velocity structures (1.8 2.2 km/s) than normal subsea sediment layers were found, which are interpreted as cemented strata by glaciation activities
    corecore