23 research outputs found

    CLINICAL IMPACT OF SERUM URIC ACID IN PATIENTS WITH ACUTE MYOCARDIAL INFARCTION

    Get PDF

    Spectroscopic Evidence for Multigap Superconductivity of Y at Megabar Pressures

    Full text link
    The recent discovery of room-temperature superconductivity (RTSC) at pressures of several megabars has led to intensive efforts to probe the origin of superconducting (SC) electron pairs. Although the signatures of the SC phase transition have been well established, few reports of the SC properties of RTSCs have been published because of the diamond anvil cell (DAC) environments. Here, we report the first direct evidence of two SC gaps in Y metal via point-contact spectroscopy (PCS) in DAC environments, where a sharp peak at the zero-bias voltage in the differential conductance is overlaid with a broad peak owing to Andreev reflection. Analysis based on the Blonder-Tinkham-Klapwijk (BTK) model reveals the existence of two SC gaps: the larger gap is 3.63 meV and the smaller gap is 0.46 meV. The temperature dependence of the two SC gaps is well explained by the BCS theory, indicating that two-band superconductivity is realized in Y metal. The successful application of PCS to Y in DAC environments is expected to guide future research on the SC gap in megabar high-Tc superconductors.Comment: 17 pages, 4 figure

    Triple-sinusoid hedgehog lattice in a centrosymmetric Kondo metal

    Full text link
    Superposed symmetry-equivalent magnetic ordering wave vectors can lead to topologically non-trivial spin textures, such as magnetic skyrmions and hedgehogs, and give rise to novel quantum phenomena due to fictitious magnetic fields associated with a non-zero Berry curvature of these spin textures. To date, all known spin textures are constructed through the superposition of multiple spiral orders, where spins vary in directions with constant amplitude. Recent theoretical studies have suggested that multiple sinusoidal orders, where collinear spins vary in amplitude, can construct distinct topological spin textures regarding chirality properties. However, such textures have yet to be experimentally realised. In this work, we report the observation of a zero-field magnetic hedgehog lattice from a superposition of triple sinusoidal wave vectors in the magnetically frustrated Kondo lattice CePtAl4Ge2. Notably, we also observe the emergence of anomalous electrical and thermodynamic behaviours near the field-induced transition from the zero-field topological hedgehog lattice to a non-topological sinusoidal state. These observations highlight the role of Kondo coupling in stabilising the zero-field hedgehog state in the Kondo lattice and warrant an expedited search for other topological magnetic structures coupled with Kondo coupling

    The characterization of (n1)\mathbf{(n-1)}-spheres with n+4\mathbf{n+4} vertices having maximal Buchstaber number

    No full text
    16 pages, 4 tables, 1 figure, 1 algorithmWe provide a GPU-friendly algorithm for obtaining all weak pseudo-manifolds whose facets are all in an input set of facets satisfying given conditions. We use it here to completely list up toric colorable seed PL-spheres with a few vertices implying the complete characterization of PL-spheres of dimension n1n-1 with n+4n+4 vertices having maximal Buchstaber numbers
    corecore