132 research outputs found

    Hepatitis C virus (HCV) infection may elicit neutralizing antibodies targeting epitopes conserved in all viral genotypes

    Get PDF
    Anti-hepatitis C virus (HCV) cross-neutralizing human monoclonal antibodies, directed against conserved epitopes on surface E2 glycoprotein, are central tools for understanding virus-host interplay, and for planning strategies for prevention and treatment of this infection. Recently, we developed a research aimed at identifying these antibody specificities. The characteristics of one of these antibodies (Fab e20) were addressed in this study. Firstly, using immunofluorescence and FACS analysis of cells expressing envelope HCV glycoproteins, Fab e20 was able to recognize all HCV genotypes. Secondly, competition assays with a panel of mouse and rat monoclonals, and alanine scanning mutagenesis analyses located the e20 epitope within the CD81 binding site, documenting that three highly conserved HCV/E2 residues (W529, G530 and D535) are critical for e20 binding. Finally, a strong neutralizing activity against HCV pseudoparticles (HCVpp) incorporating envelope glycoproteins of genotypes 1a, 1b, 2a, 2b and 4, and against the cell culture-grown (HCVcc) JFH1 strain, was observed. The data highlight that neutralizing antibodies against HCV epitopes present in all HCV genotypes are elicited during natural infection. Their availability may open new avenues to the understanding of HCV persistence and to the development of strategies for the immune control of this infection

    Protein localization as a principal feature of the etiology and comorbidity of genetic diseases

    Get PDF
    Proteins localized within the same subcellular compartment tend to be functionally associated. This study shows that subcellular localization and network distance between disease-associated proteins provide complementary information explaining patterns of disease comorbidity

    Structure-activity relationships of fluorene compounds inhibiting HCV variants

    Get PDF
    Approximately 71 million people suffer from hepatitis C virus (HCV) infection worldwide. Persistent HCV infection causes liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma, resulting in approximately 400,000 deaths annually. Effective direct-acting antiviral agents (DAAs) have been developed and are currently used for HCV treatment targeting the following three proteins: NS3/4A proteinase that cleaves the HCV polyprotein into various functional proteins, RNA-dependent RNA polymerase (designated as NS5B), and NS5A, which is required for the formation of double membrane vesicles serving as RNA replication organelles. At least one compound inhibiting NS5A is included in current HCV treatment regimens due to the high efficacy and low toxicity of drugs targeting NS5A. Here we report fluorene compounds showing strong inhibitory effects on GT 1b and 3a of HCV. Moreover, some compounds were effective against resistance-associated variants to DAAs. The structure-activity relationships of the compounds were analyzed. Furthermore, we investigated the molecular bases of the inhibitory activities of some compounds by the molecular docking method.11Ysciescopu

    An mRNA-specific tRNAi carrier eIF2A plays a pivotal role in cell proliferation under stress conditions: Stress-resistant translation of c-Src mRNA is mediated by eIF2A

    Get PDF
    c-Src, a non-receptor protein tyrosine kinase, activates NF-��B and STAT3, which in turn triggers the transcription of anti-apoptosis- and cell cycle-related genes. c-Src protein regulates cell proliferation, cell motility and programmed cell death. And the elevated level of activated c-Src protein is related with solid tumor generation. Translation of c-Src mRNA is directed by an IRES element which mediates persistent translation under stress conditions when translation of most mRNAs is inhibited by a phosphorylation of the alpha subunit of eIF2 carrying the initiator tRNA (tRNAi) to 40S ribosomal subunit under normal conditions. The molecular basis of the stress-resistant translation of c-Src mRNA remained to be elucidated. Here, we report that eIF2A, an alternative tRNAi carrier, is responsible for the stress-resistant translation of c-Src mRNA. eIF2A facilitates tRNAi loading onto the 40S ribosomal subunit in a c-Src mRNAdependent manner. And a direct interaction between eIF2A and a stem-loop structure (SL I) in the c-Src IRES is required for the c-Src IRES-dependent translation under stress conditions but not under normal conditions. Finally, we showed that the eIF2Adependent translation of c-Src mRNA plays a pivotal role in cell proliferation under stress conditions. ? The Author(s) 2016.115sciescopu

    The bent conformation of poly(A)-binding protein induced by RNA-binding is required for its translational activation function

    Get PDF
    A recent study revealed that poly(A)-binding protein (PABP) bound to poly(A) RNA exhibits a sharply bent configuration at the linker region between RNA-recognition motif 2 (RRM2) and RRM3, whereas free PABP exhibits a highly flexible linear configuration. However, the physiological role of the bent structure of mRNA-bound PABP remains unknown. We investigated a role of the bent structure of PABP by constructing a PABP variant that fails to form the poly(A)-dependent bent structure but maintains its poly (A)-binding activity. We found that the bent structure of PABP/poly(A) complex is required for PABP's efficient interaction with eIF4G and eIF4G/eIF4E complex. Moreover, the mutant PABP had compromised translation activation function and failed to augment the formation of 80S translation initiation complex in an in vitro translation system. These results suggest that the bent conformation of PABP, which is induced by the interaction with 30 poly(A) tail, mediates poly(A)-dependent translation by facilitating the interaction with eIF4G and the eIF4G/eIF4E complex. The preferential binding of the eIF4G/eIF4E complex to the bent PABP/poly(A) complex seems to be a mechanism discriminating the mRNA-bound PABPs participating in translation from the idling mRNA-unbound PABPs.111Ysciescopu

    Prediction of Effect of Pegylated Interferon Alpha-2b plus Ribavirin Combination Therapy in Patients with Chronic Hepatitis C Infection

    Get PDF
    Treatment with pegylated interferon alpha-2b (PEGIFN) plus ribavirin (RBV) is standard therapy for patients with chronic hepatitis C. Although the effectiveness, patients with high titres of group Ib hepatitis C virus (HCV) respond poorly compared to other genotypes. At present, we cannot predict the effect in an individual. Previous studies have used traditional statistical analysis by assuming a linear relationship between clinical features, but most phenomena in the clinical situation are not linearly related. The aim of this study is to predict the effect of PEG IFN plus RBV therapy on an individual patient level using an artificial neural network system (ANN). 156 patients with HCV group 1b from multiple centres were treated with PEGIFN (1.5 µg/kg) plus RBV (400–1000 mg) for 48 weeks. Data on the patients' demographics, laboratory tests, PEGIFN, and RBV doses, early viral responses (EVR), and sustained viral responses were collected. Clinical data were randomly divided into training data set and validation data set and analyzed using multiple logistic regression analysis (MLRs) and ANN to predict individual outcomes. The sensitivities of predictive expression were 0.45 for the MLRs models and 0.82 for the ANNs and specificities were 0.55 for the MLR and 0.88 for the ANN. Non-linear relation analysis showed that EVR, serum creatinine, initial dose of Ribavirin, gender and age were important predictive factors, suggesting non-linearly related to outcome. In conclusion, ANN was more accurate than MLRs in predicting the outcome of PEGIFN plus RBV therapy in patients with group 1b HCV

    eIF2A, an initiator tRNA carrier refractory to eIF2 kinases, functions synergistically with eIF5B

    Get PDF
    The initiator tRNA (Met-tRNA(i)(Met)) at the P site of the small ribosomal subunit plays an important role in the recognition of an mRNA start codon. In bacteria, the initiator tRNA carrier, IF2, facilitates the positioning of Met-tRNAiMet on the small ribosomal subunit. Eukarya contain the Met-tRNAiMet carrier, eIF2 (unrelated to IF2), whose carrier activity is inhibited under stress conditions by the phosphorylation of its -subunit by stress-activated eIF2 kinases. The stress-resistant initiator tRNA carrier, eIF2A, was recently uncovered and shown to load Met-tRNAiMet on the 40S ribosomal subunit associated with a stress-resistant mRNA under stress conditions. Here, we report that eIF2A interacts and functionally cooperates with eIF5B (a homolog of IF2), and we describe the functional domains of eIF2A that are required for its binding of Met-tRNAiMet, eIF5B, and a stress-resistant mRNA. The results indicate that the eukaryotic eIF5B-eIF2A complex functionally mimics the bacterial IF2 containing ribosome-, GTP-, and initiator tRNA-binding domains in a single polypeptide.112Ysciescopu

    RACK1 mediates rewiring of intracellular networks induced by hepatitis C virus infection

    Get PDF
    Hepatitis C virus (HCV) is a positive-strand RNA virus replicating in a membranous replication organelle composed primarily of double-membrane vesicles (DMVs) having morphological resemblance to autophagosomes. To define the mechanism of DMV formation and the possible link to autophagy, we conducted a yeast two-hybrid screening revealing 32 cellular proteins potentially interacting with HCV proteins. Among these was the Receptor for Activated Protein C Kinase 1 (RACK1), a scaffolding protein involved in many cellular processes, including autophagy. Depletion of RACK1 strongly inhibits HCV RNA replication without affecting HCV internal ribosome entry site (IRES) activity. RACK1 is required for the rewiring of subcellular membranous structures and for the induction of autophagy. RACK1 binds to HCV nonstructural protein 5A (NS5A), which induces DMV formation. NS5A interacts with ATG14L in a RACK1 dependent manner, and with the ATG14L-Beclin1-Vps34-Vps15 complex that is required for autophagosome formation. Both RACK1 and ATG14L are required for HCV DMV formation and viral RNA replication. These results indicate that NS5A participates in the formation of the HCV replication organelle through interactions with RACK1 and ATG14L. Author summary All positive-strand RNA viruses replicate their genomes in distinct membrane-associated compartments designated replication organelles. The compartmentalization of viral replication machinery allows the enrichment and coordination of cellular and viral factors required for RNA replication and the evasion from innate host defense systems. Hepatitis C virus (HCV), a prototype member of the Flaviviridae family, rearranges intracellular membranes to construct replication organelles composed primarily of double-membrane vesicles (DMVs) which are morphologically similar to autophagosomes. Nonstructural protein 5A (NS5A), which is essential for HCV replication, induces DMV formation. Here, we report that NS5A triggers DMV formation through interactions with RACK1 and components of the vesicle nucleation complex acting at the early stage of autophagy. These results illustrate how a virus skews cellular machineries to utilize them for its replication by hijacking cellular proteins through protein-protein interactions. This research sheds light on the molecular basis of replication organelle formation by HCV and possibly other viruses employing organelles with DMV morphology.11Ysciescopu

    Translation-competent 48S complex formation on HCV IRES requires the RNA-binding protein NSAP1

    Get PDF
    Translation of many cellular and viral mRNAs is directed by internal ribosomal entry sites (IRESs). Several proteins that enhance IRES activity through interactions with IRES elements have been discovered. However, the molecular basis for the IRES-activating function of the IRES-binding proteins remains unknown. Here, we report that NS1-associated protein 1 (NSAP1), which augments several cellular and viral IRES activities, enhances hepatitis C viral (HCV) IRES function by facilitating the formation of translation-competent 48S ribosome–mRNA complex. NSAP1, which is associated with the solvent side of the 40S ribosomal subunit, enhances 80S complex formation through correct positioning of HCV mRNA on the 40S ribosomal subunit. NSAP1 seems to accomplish this positioning function by directly binding to both a specific site in the mRNA downstream of the initiation codon and a 40S ribosomal protein (or proteins)
    corecore