14 research outputs found

    Complex Capacitance Analysis on Leakage Current Appearing in Electric Double-layer Capacitor Carbon Electrode

    Get PDF
    imaginary capacitance profiles(Cim vs. log f) were theoretically derived for a cylindrical pore and multiple pore systems of nonuniform pore geometry. The parallel RC circuit was assumed for the interfacial impedance, where R is the charge-transfer resistance for leakage current and C the double-layer capacitance. The theoretical derivation illustrated that the resistive tail relevant to the leakage current appears in addition to the capacitive peak, which was in accordance with the experimental data taken on the porous carbon electrode. The electric double-layer capacitor (EDLC) parameters such as the extent of leakage current, total capacitance, and rate capability were visually estimated from the imaginary capacitance profiles. The more quantitative EDLC parameters were obtained by a nonlinear fitting to the experimental data.This work was supported by KOSEF through the Research Center for Energy Conversion and Storage and also by the Division of Advanced Batteries in NGE Program (project no. 10016446)

    Construction and Characterization of Two Bacterial Artificial Chromosome Libraries of Grass Carp

    Get PDF
    Bacterial artificial chromosome (BAC) library is an important tool in genomic research. We constructed two libraries from the genomic DNA of grass carp (Ctenopharyngodon idellus) as a crucial part of the grass carp genome project. The libraries were constructed in the EcoRI and HindIII sites of the vector CopyControl pCC1BAC. The EcoRI library comprised 53,000 positive clones, and approximately 99.94% of the clones contained grass carp nuclear DNA inserts (average size, 139.7 kb) covering 7.4x haploid genome equivalents and 2% empty clones. Similarly, the HindIII library comprised 52,216 clones with approximately 99.82% probability of finding any genomic fragments containing single-copy genes; the average insert size was 121.5 kb with 2.8% insert-empty clones, thus providing genome coverage of 6.3x haploid genome equivalents of grass carp. We selected gene-specific probes for screening the target gene clones in the HindIII library. In all, we obtained 31 positive clones, which were identified for every gene, with an average of 6.2 BAC clones per gene probe. Thus, we succeeded in constructing the desired BAC libraries, which should provide an important foundation for future physical mapping and whole-genome sequencing in grass carp

    Isolation and expression of grass carp toll-like receptor 5a (CiTLR5a) and 5b (CiTLR5b) gene involved in the response to flagellin stimulation and grass carp reovirus infection

    Get PDF
    Toll-like receptor 5 (TLR5), a member of Toll-like receptors (TLRs) family and is responsible for the bacterial flagellin recognition in vertebrates, play an important role in innate immunity. In the study, two TLR5 genes of grass carp (Ctenopharyngodon idellus), named CiTLR5a and CiTLR5b, were cloned and analyzed. Both CiTLR5a and CiTLR5b are typical TLR proteins, including LRR motif, transmembrane region and TIR domain. The full-length cDNA of CiTLR5a is 3054 bp long, with a 2646 bp open reading frame (ORF), 78 bp 5' untranslated regions (UTR), and 330 bp 3' UTR. The full-length cDNA of CiTLR5b is 3326 bp, with a 2627 bp ORF, 95 bp 5' UTR, and 594 bp 3' UTR. Phylogenetic analysis showed that CiTLR5a and CiTLR5b were closed to the TLR5 of cirrhinus mrigala, cyprinus_carpio, and danio redo. Subcellular localization indicated that CiTLR5a and CiTLR5b shared similar localization pattern and may locate in the plasma membrane of transfected cells. Real-time quantitative PCR revealed CiTLR5a and CiTLR5b were constitutively expressed in all examined tissues, whereas the highest expressed tissue differed. Following exposure to flagellin and GCRV, CiTLR5a and CiTLR5b were up-regulated significantly. Moreover, the downstream genes of TLR5 signal pathway such as MyD88, NF-kappa B, IRF7, IL-1 beta, and TNF-alpha also up-regulated significantly, whereas the I kappa B gene was down-regulated, suggesting that CiTLR5a and CiTLR5b involved in response to flagellin stimulation and GCRV infection. The results obtained in the study would provide a new insight for further understand the function of TLR5 in teleost fish. (C) 2015 Elsevier Ltd. All rights reserved

    Complex capacitance analysis on rate capability of electric-double layer capacitor (EDLC) electrodes of different thickness

    No full text
    The complex capacitance analysis is utilized to examine the thickness-dependent rate capability of electric double-layer capacitor (EDLC) electrodes. Based on the transmission line model, the theoretical imaginary capacitance is derived for porous carbon electrodes, where the resistance relevant to ion transport in pores of carbon particles (intra-particle pores) and within electrode layer (inter-particle pores) is assumed to be the major component for equivalent series resistance (ESR). The use of hexagonal mesoporous carbon (HMC) as the EDLC electrode material, which has a well-defined pore structure, allows us to estimate the number of intra-particle pores in the composite electrodes such that the two resistance components are separately analyzed as a function of electrode thickness. As the theoretical derivation suggests, the time constant for intra-particle pores is invariant against the electrode thickness, whereas the time constant for inter-particle pores becomes larger for thicker electrodes. The poorer rate capability observed in the thicker electrodes is thus ascribed to a larger time constant for inter-particle pores.This work was supported by KOSEF through the Research Center for Energy Conversion and Storage. We thank them for their financial support

    Enhanced grass carp reovirus resistance of Mx-transgenic rare minnow (Gobiocypris rarus)

    No full text
    In the interferon-induced antiviral mechanisms, the Mx pathway is one of the most powerful. Mx proteins have direct antiviral activity and inhibit a wide range of viruses by blocking an early stage of the viral genome replication cycle. However, antiviral activity of piscine Mx remains unclear in vivo. In the present study, an Mx-like gene was cloned, characterized and gene-transferred in rare minnow Gobiocypris rarus, and its antiviral activity was confirmed in vivo. The full length of the rare minnow Mx-like cDNA is 2241 bp in length and encodes a polypeptide of 625 amino acids with an estimated molecular mass of 70.928 kDa and a predicted isoelectric point of 7.33. Analysis of the deduced amino acid sequence indicated that the mature peptide contains an amino-terminal tripartite GTP-binding motif, a dynamin family signature sequence, a GTPase effector domain and two carboxy-terminal leucine zipper motifs, and is the most similar to the crucian carp (Carassius auratus) Mx3 sequence with an identity of 89%. Both P0 and F1 generations of Mx-transgenic rare minnow demonstrated very significantly high survival rate to GCRV infection (P < 0.01). The mRNA expression of Mx gene was consistent with survival rate in F1 generation. The virus yield was also concurrent with survival time using electron microscope technology. Rare minnow has Mx gene(s) of its own but introducing more Mx gene improves their resistance to GCRV. Mx-transgenic rare minnow might contribute to control the GCRV diseases. (C) 2008 Published by Elsevier Ltd.In the interferon-induced antiviral mechanisms, the Mx pathway is one of the most powerful. Mx proteins have direct antiviral activity and inhibit a wide range of viruses by blocking an early stage of the viral genome replication cycle. However, antiviral activity of piscine Mx remains unclear in vivo. In the present study, an Mx-like gene was cloned, characterized and gene-transferred in rare minnow Gobiocypris rarus, and its antiviral activity was confirmed in vivo. The full length of the rare minnow Mx-like cDNA is 2241 bp in length and encodes a polypeptide of 625 amino acids with an estimated molecular mass of 70.928 kDa and a predicted isoelectric point of 7.33. Analysis of the deduced amino acid sequence indicated that the mature peptide contains an amino-terminal tripartite GTP-binding motif, a dynamin family signature sequence, a GTPase effector domain and two carboxy-terminal leucine zipper motifs, and is the most similar to the crucian carp (Carassius auratus) Mx3 sequence with an identity of 89%. Both P0 and F1 generations of Mx-transgenic rare minnow demonstrated very significantly high survival rate to GCRV infection (P < 0.01). The mRNA expression of Mx gene was consistent with survival rate in F1 generation. The virus yield was also concurrent with survival time using electron microscope technology. Rare minnow has Mx gene(s) of its own but introducing more Mx gene improves their resistance to GCRV. Mx-transgenic rare minnow might contribute to control the GCRV diseases. (C) 2008 Published by Elsevier Ltd

    Genomic organization and expression analysis of Toll-like receptor 3 in grass carp (Ctenopharyngodon idella)

    No full text
    Toll-like receptor 3 (TLR3) participates in the innate immune response by recognizing viral pathogens. To investigate grass carp immune system responding to GCRV (grass carp reovirus) infection, the full-length cDNA sequence and genomic organization of grass carp TLR3 (CiTLR3) was identified and characterized. The full-length genome sequence of CiTLR3 is composed of 5668 nucleotides, including five exons and four introns. The full-length of CiTLR3 cDNA is 3681 bp in length and encodes a polypeptide of 904 amino acids with an estimated molecular mass of 102,765 Da and a predicted isoelectric point of 8.35. Analysis of the deduced amino acid sequence indicated that CiTLR3 has four main structural domains, including a signal peptide sequence, 14 LRR (leucine-rich repeat) motifs, a transmembrane region and a TIR (Toll/interleukin-1 receptor) domain. It is most similar to the crucian carp (Carassius auratus) TLR3 amino acid sequence with an identity of 99%. Quantitative RT-PCR analysis showed that CiTLR3 transcripts were significantly up-regulated starting at day 1 and continued through day 7 following GCRV infection (P &lt; 0.05). These data implied that CiTLR3 is involved in antiviral defense, provide molecular and functional information for grass carp TLR3, and implicate their role in mediating immune protection against grass carp viral diseases. (C) 2009 Elsevier Ltd. All rights reserved.Toll-like receptor 3 (TLR3) participates in the innate immune response by recognizing viral pathogens. To investigate grass carp immune system responding to GCRV (grass carp reovirus) infection, the full-length cDNA sequence and genomic organization of grass carp TLR3 (CiTLR3) was identified and characterized. The full-length genome sequence of CiTLR3 is composed of 5668 nucleotides, including five exons and four introns. The full-length of CiTLR3 cDNA is 3681 bp in length and encodes a polypeptide of 904 amino acids with an estimated molecular mass of 102,765 Da and a predicted isoelectric point of 8.35. Analysis of the deduced amino acid sequence indicated that CiTLR3 has four main structural domains, including a signal peptide sequence, 14 LRR (leucine-rich repeat) motifs, a transmembrane region and a TIR (Toll/interleukin-1 receptor) domain. It is most similar to the crucian carp (Carassius auratus) TLR3 amino acid sequence with an identity of 99%. Quantitative RT-PCR analysis showed that CiTLR3 transcripts were significantly up-regulated starting at day 1 and continued through day 7 following GCRV infection (P < 0.05). These data implied that CiTLR3 is involved in antiviral defense, provide molecular and functional information for grass carp TLR3, and implicate their role in mediating immune protection against grass carp viral diseases. (C) 2009 Elsevier Ltd. All rights reserved

    Grass carp reovirus activates RNAi pathway in rare minnow, Gobiocypris rarus

    No full text
    Dicer catalyzes the initiation step of RNA interference (RNAi) which is known to play a significant role in innate immune response to viral infection in many organisms. To study the RNAi-related pathway after virus infection in fish, we identified a partial cDNA sequence of dicer from rare minnow, Gobiocypris rants. Real-time quantitative RT-PCR (qRT-PCR) demonstrated the Dicer transcript level was the highest at zygote stage, decreased at prim-5 stage, and was stable from the protruding mouth to adult stage. Regular RT-PCR analysis showed that the Dicer gene expressed widely in the tested tissues, including brain, gill, heart, intestine, kidney, liver, muscle, ovary, spleen and testis. The expression of Dicer mRNA was significantly increased in the early period of Grass carp reovirus (GCRV) infection, and declined from 24 It post-injection (h p.i.) (P0.05). Under transmission electron microscope, virions were difficulty to find out in 12 h p.i., and virus inclusion bodies and few scattered viral particles were easily visualized from 24 h p.i. to moribund. These results implied GCRV triggered the RNAi pathway in the early stages of infection and perhaps virus inclusion bodies suppressed the antiviral functions of RNAi mechanism. (C) 2009 Published by Elsevier B.V.Dicer catalyzes the initiation step of RNA interference (RNAi) which is known to play a significant role in innate immune response to viral infection in many organisms. To study the RNAi-related pathway after virus infection in fish, we identified a partial cDNA sequence of dicer from rare minnow, Gobiocypris rants. Real-time quantitative RT-PCR (qRT-PCR) demonstrated the Dicer transcript level was the highest at zygote stage, decreased at prim-5 stage, and was stable from the protruding mouth to adult stage. Regular RT-PCR analysis showed that the Dicer gene expressed widely in the tested tissues, including brain, gill, heart, intestine, kidney, liver, muscle, ovary, spleen and testis. The expression of Dicer mRNA was significantly increased in the early period of Grass carp reovirus (GCRV) infection, and declined from 24 It post-injection (h p.i.) (P0.05). Under transmission electron microscope, virions were difficulty to find out in 12 h p.i., and virus inclusion bodies and few scattered viral particles were easily visualized from 24 h p.i. to moribund. These results implied GCRV triggered the RNAi pathway in the early stages of infection and perhaps virus inclusion bodies suppressed the antiviral functions of RNAi mechanism. (C) 2009 Published by Elsevier B.V

    Deep learning image segmentation for the reliable porosity measurement of high-capacity Ni-based oxide cathode secondary particles

    No full text
    Abstract The optimization of geometrical pore control in high-capacity Ni-based cathode materials is required to enhance the cyclic performance of lithium-ion batteries. Enhanced porosity improves lithium-ion mobility by increasing the electrode–electrolyte contact area and reducing the number of ion diffusion pathways. However, excessive porosity can diminish capacity, thus necessitating optimizing pore distribution to compromise the trade-off relation. Accordingly, a statistically meaningful porosity estimation of electrode materials is required to engineer the local pore distribution inside the electrode particles. Conventional scanning electron microscopy (SEM) image-based porosity measurement can be used for this purpose. However, it is labor-intensive and subjected to human bias for low-contrast pore images, thereby potentially lowering measurement accuracy. To mitigate these difficulties, we propose an automated image segmentation method for the reliable porosity measurement of cathode materials using deep convolutional neural networks specifically trained for the analysis of porous cathode materials. Combined with the preprocessed SEM image datasets, the model trained for 100 epochs exhibits an accuracy of > 97% for feature segmentation with regard to pore detection on the input datasets. This automated method considerably reduces manual effort and human bias related to the digitization of pore features in serial section SEM image datasets used in 3D electron tomography. Graphical abstrac

    Isolation and analysis of a novel grass carp toll-like receptor 4 (tlr4) gene cluster involved in the response to grass carp reovirus

    No full text
    The mammalian response to lipopolysaccharide (LPS) is mainly mediated by Toll-Like Receptor 4 (TLR4). Fish and mammalian TLR4 vary; fish TLR4 ligands are unknown. Isolation of fish tlr4 genes is difficult due to their complex genomic structure. Three bacterial artificial chromosome (BAC) clones containing grass carp tlr4 were obtained. Four tlr4 genes, with a varied genomic structure and different protein domains were subsequently isolated by constructing a subcloned library and rapid amplification of cDNA ends (RACE). The four tlr4 genes were expressed during development from 12 h post-fertilization, in all healthy adult fish tissues tested, and significantly increased in grass carp reovirus (GCRV)-infected liver and muscle, suggesting the tlr4 genes play a role in GCRV infection. This study effectively separated each gene in the tlr4 gene cluster, implies that grass carp TLR4 proteins have different ligand recognition specificities to mammalian TLRs, and provides information on the functional evolution of TLRs. (C) 2012 Elsevier Ltd. All rights reserved.The mammalian response to lipopolysaccharide (LPS) is mainly mediated by Toll-Like Receptor 4 (TLR4). Fish and mammalian TLR4 vary; fish TLR4 ligands are unknown. Isolation of fish tlr4 genes is difficult due to their complex genomic structure. Three bacterial artificial chromosome (BAC) clones containing grass carp tlr4 were obtained. Four tlr4 genes, with a varied genomic structure and different protein domains were subsequently isolated by constructing a subcloned library and rapid amplification of cDNA ends (RACE). The four tlr4 genes were expressed during development from 12 h post-fertilization, in all healthy adult fish tissues tested, and significantly increased in grass carp reovirus (GCRV)-infected liver and muscle, suggesting the tlr4 genes play a role in GCRV infection. This study effectively separated each gene in the tlr4 gene cluster, implies that grass carp TLR4 proteins have different ligand recognition specificities to mammalian TLRs, and provides information on the functional evolution of TLRs. (C) 2012 Elsevier Ltd. All rights reserved
    corecore