1,947 research outputs found

    Transplantation of Adipose Derived Stromal Cells into the Developing Mouse Eye

    Get PDF
    Adipose derived stromal cells (ADSCs) were transplanted into a developing mouse eye to investigate the influence of a developing host micro environment on integration and differentiation. Green fluorescent protein-expressing ADSCs were transplanted by intraocular injections. The age of the mouse was in the range of 1 to 10 days postnatal (PN). Survival dates ranged from 7 to 28 post transplantation (DPT), at which time immunohistochemistry was performed. The transplanted ADSCs displayed some morphological differentiations in the host eye. Some cells expressed microtubule associated protein 2 (marker for mature neuron), or glial fibrillary acid protein (marker for glial cell). In addition, some cells integrated into the ganglion cell layer. The integration and differentiation of the transplanted ADSCs in the 5 and 10 PN 7 DPT were better than in the host eye the other age ranges. This study was aimed at demonstrating how the age of host micro environment would influence the differentiation and integration of the transplanted ADSCs. However, it was found that the integration and differentiation into the developing retina were very limited when compared with other stem cells, such as murine brain progenitor cell

    Bright color optical switching device by polymer network liquid crystal with a specular reflector

    Get PDF
    The color optical switching device by polymer network liquid crystal (PNLC) with color filter on a specular reflector shows excellent performance; white reflectance of 22%, color gamut of 32%, and contrast ratio up to 50:1 in reflective mode measurement. The view-angle dependence of the reflectance can be adjusted by changing the PNLC thickness. The color chromaticity shown by the device is close to the limit value of color filters, and its value nearly remains with respect to the operating voltage. These optical properties of the device can be explained from the prediction based on multiple interactions between the light and the droplets of liquid crystal. The high reflectance, vivid color image, and moderate responds time allow the PNLC device to drive good color moving image. It can widely extend the applications of the reflective device. © 2011 Optical Society of America.1

    A case of gangliocytic paraganglioma in the ampulla of Vater

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duodenal gangliocytic paraganglioma is an extremely rare tumor and few cases have been reported to date.</p> <p>Case presentation</p> <p>The authors report a case of gangliocytic paraganglioma verified by post-op pathology after pancreaticoduodenectomy for a tumor in the ampulla of Vater. The 56-year-old male patient concerned visited our emergency room with melena that started one week prior to hospitalization. The patient was diagnosed to have a tumor in the ampulla of Vater with bleeding on its surface. However post-op, he was diagnosed as having gangliocytic paraganglioma by immunohistochemistry.</p> <p>Conclusion</p> <p>This tumor has precise clinical implications, and if continuous follow up is conducted after careful diagnosis and surgical treatment, invasive major operations, such as, radical pancreaticoduodenectomy can be avoided.</p

    Synergistic Effects of Simvastatin and Irinotecan against Colon Cancer Cells with or without Irinotecan Resistance

    Get PDF
    Aims. We here investigated whether the combination of simvastatin and irinotecan could induce the synergistic effect on colon cancer cells with or without resistance to irinotecan. Methods. We investigated cell proliferation assay and assessed cell death detection ELISA and caspase-3 activity assay of various concentrations of simvastatin and irinotecan to evaluate the efficacy of drug combination on colon cancer cells with or without irinotecan resistance. Results. The IC50 values of simvastatin alone and irinotecan alone were 115.4±0.14 μM (r=0.98) and 62.5±0.18 μM (r=0.98) in HT-29 cells without resistance to irinotecan. The IC50 values of these two drugs were 221.9±0.22 μM (r=0.98) and 195.9±0.16 μM (r=0.99), respectively, in HT-29 cell with resistance to irinotecan. The results of combinations of the various concentrations of two drugs showed that combined treatment with irinotecan and simvastatin more efficiently suppressed cell proliferation of HT-29 cells even with resistance to irinotecan as well as without resistance. Furthermore, the combination of simvastatin and irinotecan at 2:1 molar ratio showed the best synergistic interaction. Conclusion. Simvastatin could act synergistically with irinotecan to overcome irinotecan resistance of colon cancer

    PPM1A Controls Diabetic Gene Programming through Directly Dephosphorylating PPAR?? at Ser273

    Get PDF
    Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a master regulator of adipose tissue biology. In obesity, phosphorylation of PPAR gamma at Ser273 (pSer273) by cyclin-dependent kinase 5 (CDK5)/extracellular signal-regulated kinase (ERK) orchestrates diabetic gene reprogramming via dysregulation of specific gene expression. Although many recent studies have focused on the development of non-classical agonist drugs that inhibit the phosphorylation of PPAR gamma at Ser273, the molecular mechanism of PPAR gamma dephosphorylation at Ser273 is not well characterized. Here, we report that protein phosphatase Mg2+/Mn2+-dependent 1A (PPM1A) is a novel PPAR gamma phosphatase that directly dephosphorylates Ser273 and restores diabetic gene expression which is dysregulated by pSer273. The expression of PPM1A significantly decreases in two models of insulin resistance: diet-induced obese (DIO) mice and db/db mice, in which it negatively correlates with pSer273. Transcriptomic analysis using microarray and genotype-tissue expression (GTEx) data in humans shows positive correlations between PPM1A and most of the genes that are dysregulated by pSer273. These findings suggest that PPM1A dephosphorylates PPAR gamma at Ser273 and represents a potential target for the treatment of obesity-linked metabolic disorders

    Optimal application of compressive palatal stents following mesiodens removal in pediatric patients:a Randomized Controlled Trial

    Get PDF
    There is no scientific evidence supporting the choice of a palatal stent in patients who underwent removal of an impacted supernumerary tooth. We aimed to investigate the effects of palatal stents in patients who underwent supernumerary tooth removal through a palatal approach and to suggest the optimal stent thickness and material. We recruited 144 patients who underwent extraction of a supernumerary tooth between the maxillary anterior teeth. Subjects were assigned to a control group (CG) or one of four compressive palatal stent groups (CPSGs) classified by the thickness and material of the thermoplastic acrylic stent used. Palatal gingival swelling and objective indices (healing, oral hygiene, gingival, and plaque) were evaluated before surgery and on postoperative days (PODs) 3, 7, and 14; pain/discomfort and the Child Oral Health Impact Profile (COHIP) were assessed as subjective indices of the effects of the stent. The CPSGs showed faster healing than did the CG on PODs 7 (P<0.001) and 14 (P=0.043); swelling was measured by 1.64±0.88 mm and 4.52±0.39 mm, respectively. Although swelling was least in the 4-mm hard group (0.92±0.33 mm), the difference compared with that in the 2-mm hard group (1.01±0.18 mm) was not significant (P=0.077). The CPSGs showed better COHIP (P<0.001-0.036) and pain scores (P<0.001) than did the CG on PODs 1-3. Compressive palatal stents reduce discomfort by decreasing pain and alleviating swelling. Although a stent is effective regardless of its thickness and material, 2-mm hard stents maximized such positive effects with minimal discomfort

    Strain-gradient-induced magnetic anisotropy in straight-stripe mixed-phase bismuth ferrites: An insight into flexomagnetic phenomenon

    Full text link
    Implementation of antiferromagnetic compounds as active elements in spintronics has been hindered by their insensitive nature against external perturbations which causes difficulties in switching among different antiferromagnetic spin configurations. Electrically-controllable strain gradient can become a key parameter to tune the antiferromagnetic states of multiferroic materials. We have discovered a correlation between an electrically-written straight-stripe mixed-phase boundary and an in-plane antiferromagnetic spin axis in highly-elongated La-5%-doped BiFeO3_{3} thin films by performing polarization-dependent photoemission electron microscopy in conjunction with cluster model calculations. Model Hamiltonian calculation for the single-ion anisotropy including the spin-orbit interaction has been performed to figure out the physical origin of the link between the strain gradient present in the mixed phase area and its antiferromagnetic spin axis. Our findings enable estimation of the strain-gradient-induced magnetic anisotropy energy per Fe ion at around 5×\times1012^{-12} eV m, and provide a new pathway towards an electric-field-induced 90^{\circ} rotation of antiferromagnetic spin axis at room temperature by flexomagnetism.Comment: 32 pages, 5 figure
    corecore