50 research outputs found

    Peripheral regulatory cells immunophenotyping in Primary Sjögren's Syndrome: a cross-sectional study

    Get PDF
    INTRODUCTION: IL-10--producing B cells, Foxp3-expressing T cells (Tregs) and the IDO-expressing dendritic cells (pDC) are able to modulate inflammatory processes, to induce immunological tolerance and, in turn, to inhibit the pathogenesis of autoimmune disease. The aim of the study was to characterize and to enumerate peripheral IL-10--producing B cells, Tregs and pDCregs in primary Sjögren's Syndrome (pSS) patients in regard of their clinical and serologic activity. METHODS: Fifty pSS patients and 25 healthy individuals were included in the study. CD19(+)--expressing peripheral B lymphocytes were purified by positive selection. CD19(+)/CD24(hi)/CD38(hi)/IL-10--producing B cells, CD4(+)/CD25(hi)/Foxp3(+ )and CD8(+)/CD28(-)/Foxp3(+ )Tregs, as well as CCR6(+)/CD123(+)/IDO(+ )DCs, were quantitated by flow cytometry. RESULTS: Immature/transitional circulating IgA(+ )IL-10--producing B cells had higher levels in pSS patients versus control group, whereas CD19(+)/CD38(hi)/IgG(+)/IL-10(+ )cells had lower percentage versus control. Indeed CD19(+)/CD24(hi)/CD38(hi)/CD5(+)/IL-10(+), CD19(+)/CD24(hi)/CD38(hi)/CD10(+)/IL-10(+), CD19(+)/CD24(hi)/CD38(hi)/CD20(+)/IL-10(+), CD19(+)/CD24(hi)/CD38(hi)/CD27(-)/IL-10(+), and CD19(+)/CD24(hi)/CD38(hi)/CXCR7(+)/IL-10(+ )cells had higher frequency in clinical inactive pSS patients when compared with control group. Remarkably, only percentages of CD19(+)/CD24(hi)/CD38(hi)/CD10(+)/IL-10(+ )and CD19(+)/CD24(hi)/CD38(hi)/CD27(-)/IL-10(+ )subsets were increased in pSS serologic inactive versus control group (P < 0.05). The percentage of IDO-expressing pDC cells was higher in pSS patients regardless of their clinical or serologic activity. There were no statistically significant differences in the percentage of CD4(+)/CD25(hi)/Foxp3(+ )Tregs between patient groups versus controls. Nonetheless, a decrease in the frequency of CD8(+)/CD28(-)/Foxp3(+ )Tregs was found in inactive pSS patients versus controls (P < 0.05). CONCLUSIONS: The findings of this exploratory study show that clinical inactive pSS patients have an increased frequency of IL-10--producing B cells and IDO-expressing pDC cells

    Polymerized-Type I Collagen Downregulates Inflammation and Improves Clinical Outcomes in Patients with Symptomatic Knee Osteoarthritis Following Arthroscopic Lavage: A Randomized, Double-Blind, and Placebo-Controlled Clinical Trial

    Get PDF
    Objectives. Polymerized-type I collagen (polymerized collagen) is a downmodulator of inflammation and cartilage regenerator biodrug. Aim. To evaluate the effect of intraarticular injections of polymerized collagen after arthroscopic lavage on inflammation and clinical improvement in patients with knee osteoarthritis (OA). Methods. Patients (n = 19) were treated with 6 intraarticular injections of 2 mL of polymerized collagen (n = 10) or 2 mL of placebo (n = 9) during 3 months. Followup was 3 months. The primary endpoints included Lequesne index, pain on a visual analogue scale (VAS), WOMAC, analgesic usage, the number of Tregs and proinflammatory/anti-inflammatory cytokine-expressing peripheral cells. Secondary outcomes were Likert score and drug evaluation. Clinical and immunological improvement was determined if the decrease in pain exceeds 20 mm on a VAS, 20% of clinical outcomes, and inflammatory parameters from baseline. Urinary levels of C-terminal crosslinking telopeptide of collagen type II (CTXII) and erythrocyte sedimentation rate (ESR) were determined. Results. Polymerized collagen was safe and well tolerated. Patients had a statistically significant improvement (P < 0.05) from baseline versus polymerized collagen and versus placebo at 6 months on Lequesne index, VAS, ESR, Tregs IL-1β, and IL-10 peripheral-expressing cells. Urinary levels of CTXII were decreased 44% in polymerized collagen versus placebo. No differences were found on incidence of adverse events between groups. Conclusion. Polymerized collagen is safe and effective on downregulation of inflammation in patients with knee OA

    Polymerized-Type I Collagen Induces Upregulation of Foxp3-Expressing CD4 Regulatory T Cells and Downregulation of IL-17-Producing CD4+ T Cells (Th17) Cells in Collagen-Induced Arthritis

    Get PDF
    Previous studies showed that polymerized-type I collagen (polymerized collagen) exhibits potent immunoregulatory properties. This work evaluated the effect of intramuscular administration of polymerized collagen in early and established collagen-induced arthritis (CIA) in mice and analyzed changes in Th subsets following therapy. Incidence of CIA was of 100% in mice challenged with type II collagen. Clinimorphometric analysis showed a downregulation of inflammation after administration of all treatments (P < 0.05). Histological analysis showed that the CIA-mice group had extensive bone erosion, pannus and severe focal inflammatory infiltrates. In contrast, there was a remarkable reduction in the severity of arthritis in mice under polymerized collagen, methotrexate or methotrexate/polymerized collagen treatment. Polymerized Collagen but not methotrexate induced tissue joint regeneration. Polymerized Collagen and methotrexate/polymerized collagen but not methotrexate alone induces downregulation of CD4+/IL17A+ T cells and upregulation of Tregs and CD4+/IFN-γ+ T cells. Thus, Polymerized Collagen could be an effective therapeutic agent in early and established rheumatoid arthritis by exerting downregulation of autoimmune inflammation

    Phenolic Compounds in Organic and Aqueous Extracts from Acacia farnesiana Pods Analyzed by ULPS-ESI-Q-oa/TOF-MS. In Vitro Antioxidant Activity and Anti-Inflammatory Response in CD-1 Mice

    Get PDF
    Abstract: Background: Acaciafarnesiana (AF) pods have been traditionally used to treat dyspepsia, diarrhea and topically for dermal inflammation. Main objectives: (1) investigate the antioxidant activity and protection against oxidative-induced damage of six extracts from AF pods and (2) their capacitytocurbtheinflammationprocessaswellastodown-regulatethepro-inflammatorymediators. Methods: Five organic extracts (chloroformic, hexanic, ketonic, methanolic, methanolic:aqueous and one aqueous extract) were obtained and analyzed by UPLC-ESI-Q-oa/TOF-MS. Antioxidant activity (DPPH•, ORAC and FRAP assays) and lipid peroxidation (TBARS assay) were performed. Assessmentofanti-inflammatorypropertieswasmadebytheearedemainducedmodelinCD-1mice andMPOactivityassay. Likewise,histologicalanalysis,IL-1β,IL-6,IL-10,TNF-α,COXmeasurements plus nitrite and immunohistochemistry analysis were carried out. Results: Methyl gallate, gallic acid,galloyl glucose isomer 1, galloyl glucose isomer 2, galloyl glucose isomer 3, digalloyl glucose isomer 1, digalloyl glucose isomer 2, digalloyl glucose isomer 3, digalloyl glucose isomer 4, hydroxytyrosol acetate, quinic acid, and caffeoylmalic acid were identified. Both organic and aqueous extracts displayed antioxidant activity. All extracts exhibited a positive effect on the interleukins, COX and immunohistochemistry assays. Conclusion: All AF pod extracts can be effective as antioxidant and topical anti-inflammatory agents. Keywords: Acacia farnesiana pods; antioxidant and anti-inflammatory activities; bioactive compounds; polyphenol
    corecore