17 research outputs found

    The Mid-infrared Instrument for JWST and Its In-flight Performance

    Get PDF
    The Mid-Infrared Instrument (MIRI) extends the reach of the James Webb Space Telescope (JWST) to 28.5 μm. It provides subarcsecond-resolution imaging, high sensitivity coronagraphy, and spectroscopy at resolutions of λ/Δλ ∼ 100-3500, with the high-resolution mode employing an integral field unit to provide spatial data cubes. The resulting broad suite of capabilities will enable huge advances in studies over this wavelength range. This overview describes the history of acquiring this capability for JWST. It discusses the basic attributes of the instrument optics, the detector arrays, and the cryocooler that keeps everything at approximately 7 K. It gives a short description of the data pipeline and of the instrument performance demonstrated during JWST commissioning. The bottom line is that the telescope and MIRI are both operating to the standards set by pre-launch predictions, and all of the MIRI capabilities are operating at, or even a bit better than, the level that had been expected. The paper is also designed to act as a roadmap to more detailed papers on different aspects of MIRI

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Education for the Australian and New Zealand Perfusionist

    No full text

    The Future of the Perfusion Record: Automated Data Collection vs. Manual Recording

    No full text
    The perfusion record, whether manually recorded or computer generated, is a legal representation of the procedure. The handwritten perfusion record has been the most common method of recording events that occur during cardiopulmonary bypass. This record is of significant contrast to the integrated data management systems available that provide continuous collection of data automatically or by means of a few keystrokes. Additionally, an increasing number of monitoring devices are available to assist in the management of patients on bypass. These devices are becoming more complex and provide more data for the perfusionist to monitor and record. Most of the data from these can be downloaded automatically into online data management systems, allowing more time for the perfusionist to concentrate on the patient while simultaneously producing a more accurate record. In this prospective report, we compared 17 cases that were recorded using both manual and electronic data collection techniques. The perfusionist in charge of the case recorded the perfusion using the manual technique while a second perfusionist entered relevant events on the electronic record generated by the Stockert S3 Data Management System/Data Bahn (Munich, Germany). Analysis of the two types of perfusion records showed significant variations in the recorded information. Areas that showed the most inconsistency included measurement of the perfusion pressures, flow, blood temperatures, cardioplegia delivery details, and the recording of events, with the electronic record superior in the integrity of the data. In addition, the limitations of the electronic system were also shown by the lack of electronic gas flow data in our hardware. Our results confirm the importance of accurate methods of recording of perfusion events. The use of an automated system provides the opportunity to minimize transcription error and bias. This study highlights the limitation of spot recording of perfusion events in the overall record keeping for perfusion management

    Disconnection of Cobe SMARxT® Tubing from the Venous Outlet of the Terumo Capiox® SX25RX Oxygenator During Cardiopulmonary Bypass

    No full text
    The use of surface modified, biocompatible tubing in cardiopulmonary bypass has been reported to decrease the inflammatory responses caused by blood contact with the non endothelial surface of poly vinyl chloride (PVC) tubing. The combination of advances in biocompatible tubing and increased affordability resulted in a change to our cardiopulmonary bypass circuit, with the Terumo Capiox® SX25 oxygenator and Cobe PVC tubing being replaced with a Terumo Capiox® SX25RX (with X coating) and Cobe SMARxT® tubing. Prior to the introduction of the coated oxygenator, no connection problems had been evident. One unrelated disconnection involving coated tubing was reported in June 2005 to the Australian and New Zealand College of Perfusionists Perfusion Incident Reporting System. At this time we revised all of our set up protocols and the recommended actions from manufacturers. We further report three separate incidents of pump boot disconnection from the venous reservoir outlet of the oxygenator during bypass (that occurred within a 13-month period), and an outline of immediate and prospective evaluation of the probable cause. We propose that SMARxT® 3/8″ × 3/32″ tubing should not be used on the venous outlet connector of Terumo Capiox® SX25RX oxygenators. It appears as though the design of the outlet combined with the properties of SMARxT® tubing may contribute to the disconnection

    Improving Cardiopulmonary Bypass: Does Continuous Blood Gas Monitoring Have a Role to Play?

    No full text
    The CDI™500 (Terumo Cardiovascular Systems, Ann Arbor, MI) is an in-line blood gas monitoring device that has been used in clinical practice for over a decade. Few randomized studies have evaluated the value of this device with respect to improved perfusion management. We routinely use automated continuous quality indicator programs to assess perfusion management. The aim of this study is to investigate in a prospective randomized trial the role of in-line blood gas monitoring in the improvement of blood gas management during cardiopulmonary bypass (CPB) utilizing continuous quality indicators. Patients were randomized into two groups (Control, CDI). Patients in the Control group received our standard CPB blood gas management, with intermittent blood gas results. Continuous blood gas measurements from the CDI™500 were recorded at 20-second intervals, with the perfusionist blinded to these measurements. Patients in the CDI group received standard CPB blood gas management, in addition to continuous blood gas measurements visible on the CDI™500, the alarm system activated, and the data recorded. Perfusion management for all cases was guided by institutional protocols. One hundred patients (50 in each group) were included in the study. No significant difference existed between the groups on demographic, surgical, or clinical outcomes. Blood gas levels of patients in the CDI group were able to be maintained in accordance to protocol a greater percentage of the time, e.g., pCO2 management was 2% versus 20% (p = .008); this was most notable for differences between the Control and the CDI group for pCO2 > 45 mmHg (p = .003). Practice variation determined via statistical control charts improved for both pH and pCO2, represented by a decrease in the variation associated with practice. Continuous blood gas monitoring with the CDI™500 results in significantly improved blood gas management as determined by adherence to institutional protocols

    Is Conventional Bypass for Coronary Artery Bypass Graft Surgery a Misnomer?

    No full text
    Although recent trials comparing on vs. off-pump revascularization techniques describe cardiopulmonary bypass (CPB) as “conventional,” inadequate description and evaluation of how CPB is managed often exist in the peer-reviewed literature. We identify and subsequently describe regional and center-level differences in the techniques and equipment used for conducting CPB in the setting of coronary artery bypass grafting (CABG) surgery. We accessed prospectively collected data among isolated CABG procedures submitted to either the Australian and New Zealand Collaborative Perfusion Registry (ANZCPR) or Perfusion Measures and outcomes (PERForm) Registry between January 1, 2014, and December 31, 2015. Variation in equipment and management practices reflecting key areas of CPB is described across 47 centers (ANZCPR: 9; PERForm: 38). We report average usage (categorical data) or median values (continuous data) at the center-level, along with the minimum and maximum across centers. Three thousand five hundred sixty-two patients were identified in the ANZCPR and 8,450 in PERForm. Substantial variation in equipment usage and CPB management practices existed (within and across registries). Open venous reservoirs were commonly used across both registries (nearly 100%), as were “all-but-cannula” biopassive surface coatings (>90%), whereas roller pumps were more commonly used in ANZCPR (ANZCPR: 85% vs. PERForm: 64%). ANZCPR participants had 640 mL absolute higher net prime volumes, attributed in part to higher total prime volume (1,462 mL vs. 1,217 mL) and lower adoption of retrograde autologous priming (20% vs. 81%). ANZCPR participants had higher nadir hematocrit on CPB (27 vs. 25). Minimal absolute differences existed in exposure to high arterial outflow temperatures (36.6°C vs. 37.0°C). We report substantial center and registry differences in both the type of equipment used and CPB management strategies. These findings suggest that the term “conventional bypass” may not adequately reflect real-world experiences. Instead of using this term, authors should provide key details of the CPB practices used in their patients
    corecore