4 research outputs found

    JWST MIRI MRS Observations of T Cha: Discovery of a Spatially Resolved Disk Wind

    No full text
    Understanding when and how circumstellar disks disperse is crucial to constrain planet formation and migration. Thermal winds powered by high-energy stellar photons have long been theorized to drive disk dispersal. However, evidence for these winds is currently based only on small (∌3–6 km s−1) blueshifts in [Ne ii] 12.81 ÎŒm lines, which does not exclude MHD winds. We report JWST MIRI MRS spectro-imaging of T Cha, a disk with a large dust gap (∌30 au in radius) and blueshifted [Ne ii] emission. We detect four forbidden noble gas lines, [Ar ii], [Ar iii], [Ne ii], and [Ne iii], of which [Ar iii] is the first detection in any protoplanetary disk. We use line flux ratios to constrain the energy of the ionizing photons and find that argon is ionized by extreme ultraviolet, whereas neon is most likely ionized by X-rays. After performing continuum and point-spread function subtraction on the integral field unit cube, we discover a spatial extension in the [Ne ii] emission off the disk continuum emission. This is the first spatially resolved [Ne ii] disk wind emission. The mostly ionic spectrum of T Cha, in combination with the extended [Ne ii] emission, points to an evolved stage for any inner MHD wind and is consistent with the existence of an outer thermal wind ionized and driven by high-energy stellar photons. This work acts as a pathfinder for future observations aiming at investigating disk dispersal using JWST.</p

    Modeling JWST MIRI-MRS Observations of T Cha: Mid-IR Noble Gas Emission Tracing a Dense Disk Wind

    No full text
    [Ne ii] 12.81 ÎŒm emission is a well-used tracer of protoplanetary disk winds due to its blueshifted line profile. Mid-Infrared Instrument (MIRI)-Medium Resolution Spectrometer (MRS) recently observed T Cha, detecting this line along with lines of [Ne iii], [Ar ii], and [Ar iii], with the [Ne ii] and [Ne iii] lines found to be extended while the [Ar ii] was not. In this complementary work, we use these lines to address long-debated questions about protoplanetary disk winds regarding their mass-loss rate, the origin of their ionization, and the role of magnetically driven winds as opposed to photoevaporation. To this end, we perform photoionization radiative transfer on simple hydrodynamic wind models to map the line emission. We compare the integrated model luminosities to those observed with MIRI-MRS to identify which models most closely reproduce the data and produce synthetic images from these to understand what information is captured by measurements of the line extents. Along with the low degree of ionization implied by the line ratios, the relative compactness of [Ar ii] compared to [Ne ii] is particularly constraining. This requires Ne ii production by hard X-rays and Ar ii production by soft X-rays (and/or EUV) in an extended (≳10 au) wind that is shielded from soft X-rays, necessitating a dense wind with material launched on scales down to ∌1 au. Such conditions could be produced by photoevaporation, whereas an extended magnetohydrodynamic (MHD) wind producing equal shielding would likely underpredict the line fluxes. However, a tenuous inner MHD wind may still contribute to shielding the extended wind. This picture is consistent with constraints from spectrally resolved line profiles.</p

    The Mid-infrared Instrument for JWST and Its In-flight Performance

    No full text
    The Mid-Infrared Instrument (MIRI) extends the reach of the James Webb Space Telescope (JWST) to 28.5 ÎŒm. It provides subarcsecond-resolution imaging, high sensitivity coronagraphy, and spectroscopy at resolutions of λ/Δλ ∌ 100–3500, with the high-resolution mode employing an integral field unit to provide spatial data cubes. The resulting broad suite of capabilities will enable huge advances in studies over this wavelength range. This overview describes the history of acquiring this capability for JWST. It discusses the basic attributes of the instrument optics, the detector arrays, and the cryocooler that keeps everything at approximately 7 K. It gives a short description of the data pipeline and of the instrument performance demonstrated during JWST commissioning. The bottom line is that the telescope and MIRI are both operating to the standards set by pre-launch predictions, and all of the MIRI capabilities are operating at, or even a bit better than, the level that had been expected. The paper is also designed to act as a roadmap to more detailed papers on different aspects of MIRI.</p
    corecore