3,489 research outputs found

    The effect of subgroup homogeneity of efficacy on contribution in public good dilemmas

    Get PDF
    open access articleThis paper examines how to maximize contribution in public good dilemmas by arranging people into homogeneous or heterogeneous subgroups. Past studies on the effect of homo- geneity of efficacy have exclusively manipulated group composition in their experimental designs, which might have imposed a limit on ecological validity because group membership may not be easily changed in reality. In this study, we maintained the same group composi- tion but varied the subgroup composition. We developed a public good dilemmas paradigm in which participants were assigned to one of the four conditions (high- vs. low-efficacy; homogeneous vs. heterogeneous subgroup) to produce their endowments and then to decide how much to contribute. We found that individuals in homogeneous and heteroge- neous subgroups produced a similar amount and proportion of contribution, which was due to the two mediating effects that counteracted each other, namely (a) perceived efficacy rel- ative to subgroup and (b) expectation of contribution of other subgroup members. This paper demonstrates both the pros and cons of arranging people into homogeneous and het- erogeneous subgroups of efficacy

    Programmed death-1 (PD-1) defines a transient and dysfunctional oligoclonal T cell population in acute homeostatic proliferation

    Get PDF
    The host responds to lymphopenic environments by acute homeostatic proliferation, which is a cytokine- and endogenous peptide-driven expansion of lymphocytes that restores the numbers and diversity of T cells. It is unknown how these homeostatically proliferating (HP) cells are ultimately controlled. Using a system where lymphocytic choriomeningitis virus–immune C57BL/6 splenocytes were transferred into lymphopenic T cell–deficient hosts and allowed to reconstitute the environment, we defined the following three populations of T cells: slowly dividing Ly6C+ cells, which contained bona fide virus-specific memory cells, and more rapidly dividing Ly6C− cells segregating into programmed death (PD)-1+ and PD-1− fractions. The PD-1+ HP cell population, which peaked in frequency at day 21, was dysfunctional in that it failed to produce interferon γ or tumor necrosis factor α on T cell receptor (TCR) stimulation, had down-regulated expression of interleukin (IL)-7Rα, IL-15Rβ, and Bcl-2, and reacted with Annexin V, which is indicative of a preapoptotic state. The PD-1+ HP cells, in contrast to other HP cell fractions, displayed highly skewed TCR repertoires, which is indicative of oligoclonal expansion; these skewed repertoires and the PD-1+ population disappeared by day 70 from the host, presumably because of apoptosis. These results suggest that PD-1 may play a negative regulatory role to control rapidly proliferating and potentially pathogenic autoreactive CD8+ T cells during homeostatic reconstitution of lymphopenic environments

    Nonclassic lipoid congenital adrenal hyperplasia masquerading as familial glucocorticoid deficiency

    Get PDF
    Context: Familial glucocorticoid deficiency (FGD) is an autosomal recessive disorder resulting from resistance to the action of ACTH on the adrenal cortex. Affected individuals are deficient in cortisol and, if untreated, are likely to succumb to hypoglycemia and/or overwhelming infection. Mutations of the ACTH receptor (MC2R) and the melanocortin 2 receptor accessory protein (MRAP), FGD types 1 and 2 respectively, account for approximately 45% of cases. Objective: A locus on chromosome 8 has previously been linked to the disease in three families, but no underlying gene defect has to date been identified. Design: The study design comprised single-nucleotide polymorphism genotyping and mutation detection. Setting: The study was conducted at secondary and tertiary referral centers. Patients: Eighty probands from families referred for investigation of the genetic cause of FGD participated in the study. Interventions: There were no interventions. Results: Analysis by single-nucleotide polymorphism array of the genotype of one individual with FGD previously linked to chromosome 8 revealed a large region of homozygosity encompassing the steroidogenic acute regulatory protein gene, STAR. We identified homozygous STAR mutations in this patient and his affected siblings. Screening of our total FGD patient cohort revealed homozygous STAR mutations in a further nine individuals from four other families. Conclusions: Mutations in STAR usually cause lipoid congenital adrenal hyperplasia, a disorder characterized by both gonadal and adrenal steroid deficiency. Our results demonstrate that certain mutations in STAR (R192C and the previously reported R188C) can present with a phenotype indistinguishable from that seen in FGD

    Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes

    Get PDF
    Plant genomes contain several hundred defensin-like (DEFL) genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species

    The pathological effects of CCR2+ inflammatory monocytes are amplified by an IFNAR1-triggered chemokine feedback loop in highly pathogenic influenza infection

    Get PDF
    Background: Highly pathogenic influenza viruses cause high levels of morbidity, including excessive infiltration of leukocytes into the lungs, high viral loads and a cytokine storm. However, the details of how these pathological features unfold in severe influenza infections remain unclear. Accumulation of Gr1 + CD11b + myeloid cells has been observed in highly pathogenic influenza infections but it is not clear how and why they accumulate in the severely inflamed lung. In this study, we selected this cell population as a target to investigate the extreme inflammatory response during severe influenza infection. Results: We established H1N1 IAV-infected mouse models using three viruses of varying pathogenicity and noted the accumulation of a defined Gr1 + CD11b + myeloid population correlating with the pathogenicity. Herein, we reported that CCR2+ inflammatory monocytes are the major cell compartments in this population. Of note, impaired clearance of the high pathogenicity virus prolonged IFN expression, leading to CCR2+ inflammatory monocytes amplifying their own recruitment via an interferon-alpha/beta receptor 1 (IFNAR1)-triggered chemokine loop. Blockage of IFNAR1-triggered signaling or inhibition of viral replication by Oseltamivir significantly suppresses the expression of CCR2 ligands and reduced the influx of CCR2+ inflammatory monocytes. Furthermore, trafficking of CCR2+ inflammatory monocytes from the bone marrow to the lung was evidenced by a CCR2-dependent chemotaxis. Importantly, leukocyte infiltration, cytokine storm and expression of iNOS were significantly reduced in CCR2-/- mice lacking infiltrating CCR2+ inflammatory monocytes, enhancing the survival of the infected mice. Conclusions: Our results indicated that uncontrolled viral replication leads to excessive production of inflammatory innate immune responses by accumulating CCR2+ inflammatory monocytes, which contribute to the fatal outcomes of high pathogenicity virus infections

    Deep Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database

    Full text link
    Radiologists in their daily work routinely find and annotate significant abnormalities on a large number of radiology images. Such abnormalities, or lesions, have collected over years and stored in hospitals' picture archiving and communication systems. However, they are basically unsorted and lack semantic annotations like type and location. In this paper, we aim to organize and explore them by learning a deep feature representation for each lesion. A large-scale and comprehensive dataset, DeepLesion, is introduced for this task. DeepLesion contains bounding boxes and size measurements of over 32K lesions. To model their similarity relationship, we leverage multiple supervision information including types, self-supervised location coordinates and sizes. They require little manual annotation effort but describe useful attributes of the lesions. Then, a triplet network is utilized to learn lesion embeddings with a sequential sampling strategy to depict their hierarchical similarity structure. Experiments show promising qualitative and quantitative results on lesion retrieval, clustering, and classification. The learned embeddings can be further employed to build a lesion graph for various clinically useful applications. We propose algorithms for intra-patient lesion matching and missing annotation mining. Experimental results validate their effectiveness.Comment: Accepted by CVPR2018. DeepLesion url adde

    Identification of an Endogenous Ligand Bound to a Native Orphan Nuclear Receptor

    Get PDF
    Orphan nuclear receptors have been instrumental in identifying novel signaling pathways and therapeutic targets. However, identification of ligands for these receptors has often been based on random compound screens or other biased approaches. As a result, it remains unclear in many cases if the reported ligands are the true endogenous ligands, – i.e., the ligand that is bound to the receptor in an unperturbed in vivo setting. Technical limitations have limited our ability to identify ligands based on this rigorous definition. The orphan receptor hepatocyte nuclear factor 4 α (HNF4α) is a key regulator of many metabolic pathways and linked to several diseases including diabetes, atherosclerosis, hemophilia and cancer. Here we utilize an affinity isolation/mass-spectrometry (AIMS) approach to demonstrate that HNF4α is selectively occupied by linoleic acid (LA, C18:2ω6) in mammalian cells and in the liver of fed mice. Receptor occupancy is dramatically reduced in the fasted state and in a receptor carrying a mutation derived from patients with Maturity Onset Diabetes of the Young 1 (MODY1). Interestingly, however, ligand occupancy does not appear to have a significant effect on HNF4α transcriptional activity, as evidenced by genome-wide expression profiling in cells derived from human colon. We also use AIMS to show that LA binding is reversible in intact cells, indicating that HNF4α could be a viable drug target. This study establishes a general method to identify true endogenous ligands for nuclear receptors (and other lipid binding proteins), independent of transcriptional function, and to track in vivo receptor occupancy under physiologically relevant conditions
    corecore