15 research outputs found

    Practical quantum cryptography for secure free-space communications

    Get PDF
    Quantum cryptography is an emerging technology in which two parties may simultaneously generate shared, secret cryptographic key material using the transmission of quantum states of light. The security of these transmissions is based on the inviolability of the laws of quantum mechanics and information-theoretically secure post-processing methods. An adversary can neither successfully tap the quantum transmissions, nor evade detection, owing to Heisenberg's uncertainty principle. In this paper we describe the theory of quantum cryptography, and the most recent results from our experimental free-space system with which we have demonstrated for the first time the feasibility of quantum key generation over a point-to-point outdoor atmospheric path in daylight. We achieved a transmission distance of 0.5 km, which was limited only by the length of the test range. Our results provide strong evidence that cryptographic key material could be generated on demand between a ground station and a satellite (or between two satellites), allowing a satellite to be securely re-keyed on orbit. We present a feasibility analysis of surface-to-satellite quantum key generation.Comment: 12 pages, 4 figure

    Long distance decoy state quantum key distribution in optical fiber

    Full text link
    The theoretical existence of photon-number-splitting attacks creates a security loophole for most quantum key distribution (QKD) demonstrations that use a highly attenuated laser source. Using ultra-low-noise, high-efficiency transition-edge sensor photodetectors, we have implemented the first version of a decoy-state protocol that incorporates finite statistics without the use of Gaussian approximations in a one-way QKD system, enabling the creation of secure keys immune to photon-number-splitting attacks and highly resistant to Trojan horse attacks over 107 km of optical fiber.Comment: 4 pages, 3 figure

    Genesis Mission to Return Solar Wind Samples to Earth

    Get PDF
    The Genesis spacecraft, launched on 8 August 2001 from Cape Canaveral, Florida, will be the first spacecraft ever to return from interplanetary space. The fifth in NASAs line of low-cost, Discovery-class missions, its goal is to collect samples of solar wind and return them to Earth for detailed isotopic and elemental analysis. The spacecraft is to collect solar wind for over 2 years, while circling the L1 point 1.5 million km Sunward of the Earth, before heading back for a capsule-style re-entry in September 2004. After parachute deployments mid-air helicopter recovery will be used to avoid a hard landing. The mission has been in development over 10 years, and its cost, including development, mission operations, and initial sample analysis, is approximately $209 million

    Secure communications using quantum cryptography

    Get PDF
    The secure distribution of the secret random bit sequences known as {open_quotes}key{close_quotes} material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is an emerging technology for secure key distribution with single-photon transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). We have developed experimental quantum cryptography systems based on the transmission of non-orthogonal single-photon states to generate shared key material over multi-kilometer optical fiber paths and over line-of-sight links. In both cases, key material is built up using the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. In our optical fiber experiment we have performed quantum key distribution over 24-km of underground optical fiber using single-photon interference states, demonstrating that secure, real-time key generation over {open_quotes}open{close_quotes} multi-km node-to-node optical fiber communications links is possible. We have also constructed a quantum key distribution system for free-space, line-of-sight transmission using single-photon polarization states, which is currently undergoing laboratory testing. 7 figs
    corecore