13 research outputs found

    Increasing the power of association studies with affected families, unrelated cases and controls

    Get PDF
    When studying the genetics of inherited diseases, researchers often collect data on affected families, unrelated cases, and healthy controls. However, the joint analysis of such heterogeneous data is difficult, and the simpler analysis of homogeneous subsets is often suboptimal. For example, while case-control tests of association are sensitive to allele frequency differences, the preferential transmission of risk alleles from heterozygous parents to their affected offspring is typically ignored. Similarly, the transmission disequilibrium test (TDT) fails to incorporate the difference in allele frequencies when testing for association. To boost the power of modern genetic studies, we propose POPFAM – a fast and efficient test of association that can accommodate large affected families, unrelated cases, and controls. We use simulations to assess the type I error and power of POPFAM across different genetic models, and minor allele frequencies. For comparison, we examine the power of competing methods: the trend test, a Wald test (equivalent to the TDT), and SCOUT. Our results show that POPFAM maintains the correct type I error, and that it is more powerful than the trend test or the TDT. It performs as well as, or better than the likelihood ratio test SCOUT, which was developed specifically for case-parent/case-control data. Furthermore, when applied to the human leukocyte antigen genotypes of 401 type 1 diabetic families, POPFAM confirmed the previously reported association between DRB1(*)03:01 and microvascular complications (p = 0.04). In general, we expect our proposed test to facilitate the identification of clinically important genomic regions, and to better inform the design of follow-up sequencing efforts

    Pharmacologic inhibition of JAK-STAT signaling promotes hair growth

    Get PDF
    Several forms of hair loss in humans are characterized by the inability of hair follicles to enter the growth phase (anagen) of the hair cycle after being arrested in the resting phase (telogen). Current pharmacologic therapies have been largely unsuccessful in targeting pathways that can be selectively modulated to induce entry into anagen. We show that topical treatment of mouse and human skin with small-molecule inhibitors of the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway results in rapid onset of anagen and subsequent hair growth. We show that JAK inhibition regulates the activation of key hair follicle populations such as the hair germ and improves the inductivity of cultured human dermal papilla cells by controlling a molecular signature enriched in intact, fully inductive dermal papillae. Our findings open new avenues for exploration of JAK-STAT inhibition for promotion of hair growth and highlight the role of this pathway in regulating the activation of hair follicle stem cells

    Molecular signatures define alopecia areata subtypes and transcriptional biomarkers

    Get PDF
    AbstractAlopecia areata (AA) is an autoimmune disease typified by nonscarring hair loss with a variable clinical course. In this study, we conducted whole genome gene expression analysis of 96 human scalp skin biopsy specimens from AA or normal control subjects. Based on gene expression profiling, samples formed distinct clusters based on the presence or absence of disease as well as disease phenotype (patchy disease compared with alopecia totalis or universalis). Differential gene expression analysis allowed us to robustly demonstrate graded immune activity in samples of increasing phenotypic severity and generate a quantitative gene expression scoring system that classified samples based on interferon and cytotoxic T lymphocyte immune signatures critical for disease pathogenesis

    Principal components ancestry adjustment for Genetic Analysis Workshop 17 data

    Get PDF
    Statistical tests on rare variant data may well have type I error rates that differ from their nominal levels. Here, we use the Genetic Analysis Workshop 17 data to estimate type I error rates and powers of three models for identifying rare variants associated with a phenotype: (1) by using the number of minor alleles, age, and smoking status as predictor variables; (2) by using the number of minor alleles, age, smoking status, and the identity of the population of the subject as predictor variables; and (3) by using the number of minor alleles, age, smoking status, and ancestry adjustment using 10 principal component scores. We studied both quantitative phenotype and a dichotomized phenotype. The model with principal component adjustment has type I error rates that are closer to the nominal level of significance of 0.05 for single-nucleotide polymorphisms (SNPs) in noncausal genes for the selected phenotype than the model directly adjusting for population. The principal component adjustment model type I error rates are also closer to the nominal level of 0.05 for noncausal SNPs located in causal genes for the phenotype. The power for causal SNPs with the principal component adjustment model is comparable to the power of the other methods. The power using the underlying quantitative phenotype is greater than the power using the dichotomized phenotype

    Performance and psychometric properties of lupus impact tracker in assessing patient-reported outcomes in pediatric lupus: Report from a pilot study

    No full text
    © The Author(s) 2020. Objective: To evaluate the reliability, validity, feasibility and psychometric performance of the Lupus Impact Tracker (LIT) as a patient reported outcome (PRO) measure tool in pediatric systemic lupus erythematosus (pSLE). Methods: This is a prospective, observational, pilot study where patients aged between 12 and 25 years, fulfilling the 1997 ACR classification criteria for SLE, were enrolled. Over 3 consecutive, routine, clinical visits, the patients completed the LIT alongside the Patient-Reported Outcomes Measurement Information System-Short Forms (PROMIS-SFs), Childhood Health Assessment Questionnaire (CHAQ). Rheumatologists completed the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) and the Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC-ACR) Damage Index. Demographic, clinical and laboratory data were also collected. Results: Of 46 patients enrolled, 38 patients completed 2 visits and 31 completed all 3 visits. Seventy-eight percent were female, 33% African American, 28% Asian, 15% Caucasian and 17% Hispanic. The mean (SD) age was 17.2 (2.7) years, with a mean (SD) disease duration of 4.6 (3.1) years. The mean (SD) SLEDAI-2K at enrollment was 3.54 (2.96). In the 38 patients who completed two or more visits, intra-class correlation coefficient and Cronbach alpha were calculated to be 0.70 and 0.91 respectively, signifying good reliability of LIT. The LIT showed positive correlation with CHAQ-Disability Index and majority of the PROMIS-SFs parameters. Construct validity was established against clinical disease activity (SLEDAI-2K). Conclusion: The preliminary results indicate that the LIT is a reliable and valid instrument to capture PRO in p-SLE. Prospective validation with a larger, multicenter cohort is the next step

    Reversal of Alopecia Areata Following Treatment With the JAK1/2 Inhibitor Baricitinib

    No full text
    Background: Alopecia areata (AA) is an autoimmune disease resulting in hair loss with devastating psychosocial consequences. Despite its high prevalence, there are no FDA-approved treatments for AA. Prior studies have identified a prominent interferon signature in AA, which signals through JAK molecules. Methods: A patient with AA was enrolled in a clinical trial to examine the efficacy of baricitinib, a JAK1/2 inhibitor, to treat concomitant CANDLE syndrome. In vivo, preclinical studies were conducted using the C3H/HeJ AA mouse model to assess the mechanism of clinical improvement by baricitinib. Findings: The patient exhibited a striking improvement of his AA on baricitinib over several months. In vivo studies using the C3H/HeJ mouse model demonstrated a strong correlation between resolution of the interferon signature and clinical improvement during baricitinib treatment. Interpretation: Baricitinib may be an effective treatment for AA and warrants further investigation in clinical trials
    corecore