1,818 research outputs found

    Starch Structures and Physicochemical Properties of a Novel β-glucan enriched Oat Hydrocolloid Product with and without Supercritical Carbon Dioxide Extraction

    Get PDF
    Starch structures and physicochemical properties of C-trim30, a β-glucan-enriched oat product (32% β-glucan), with or without supercritical carbon dioxide extraction (SCD) were studied to evaluate suitability for commercial applications and potential to degrade starch to increase β-glucan concentration. Scanning electron micrographs showed C-trim30 was composed of 200-300 μm long, porous particles. HPSEC equipped with MALLS and RI detectors showed C-trim30 had three peaks, corresponding to amylopectin with weight-average molecular weight (Mw) of 1.0x108, breakdown amylopectin product (Mw 1.1x107) and amylose (Mw 1.7x106). β-glucans were not observed due to HPSEC column absorption. C-trim30 amylopectin Mw and gyration radii increased after SCD suggesting aggregation of molecules occurred. No thermal transitions were observed for C-trim30 heated 0-150°C. C-trim30 pasting properties, measured using Rapid ViscoAnalyser, showed high peak viscosity (291 RVU) at 30°C, high breakdown (200 RVU), final (273 RVU) and setback (183 RVU) viscosity after heated to 95°C while stirred. SCD increased peak (423 RVU) and breakdown (318 RVU) viscosity. C-trim30 heated from 15 to 110°C showed higher water-holding capacity occurred without SCD. SCD oil fatty acid composition of 82% unsaturated was apposite for health-food applications. Study suggests C-trim30 with and without SCD could function as fat substitutes

    Scheduling real-time, periodic jobs using imprecise results

    Get PDF
    A process is called a monotone process if the accuracy of its intermediate results is non-decreasing as more time is spent to obtain the result. The result produced by a monotone process upon its normal termination is the desired result; the error in this result is zero. External events such as timeouts or crashes may cause the process to terminate prematurely. If the intermediate result produced by the process upon its premature termination is saved and made available, the application may still find the result unusable and, hence, acceptable; such a result is said to be an imprecise one. The error in an imprecise result is nonzero. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. This problem differs from the traditional scheduling problems since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result. Consequently, the amounts of processor time assigned to tasks in a valid schedule can be less than the amounts of time required to complete the tasks. A meaningful formulation of this problem taking into account the quality of the overall result is discussed. Three algorithms for scheduling jobs for which the effects of errors in results produced in different periods are not cumulative are described, and their relative merits are evaluated

    Molecular Structure of Selected Tuber and Root Starches and Effect of Amylopectin Structure on Their Physical Properties

    Get PDF
    The objectives of this study were to characterize starches isolated from potato, canna, fern, and kudzu, grown in Hangzhou, China, for potential food and nonfood applications and to gain understandings of the structures and properties of tuber and root starches. Potato and canna starches with B-type X-ray patterns had larger proportions of amylopectin (AP) long branch chains (DP g37) than did fern (C-type) and kudzu (CA-type) starches. The analysis of Naegeli dextrins suggested that fern and kudzu starches had more branch points, R-(1,6)-D-glycosidic linkages, located within the double-helical crystalline lamella than did the B-type starches. Dispersed molecular densities of the C- and CA-type APs (11.6-13.5 g/mol/nm3) were significantly larger than those of the B-type APs (1.4-6.1 g/mol/nm3) in dilute solutions. The larger proportion of the long AP branch chains in the B-type starch granules resulted in greater gelatinization enthalpy changes (ΔH). Retrograded kudzu starch, which had the shortest average chain length (DP 25.1), melted at a lower temperature (37.9 °C) than the others. Higher peak viscosities (550-749 RVU at 8%, dsb) of potato starches were attributed to the greater concentrations of phosphate monoesters, longer branch chains, and larger granule sizes compared with other tuber and root starches

    Real-Time Monitoring of the Mechanical Properties of a Soy Protein and Rubber Polymer during its Production Using Transient Infrared Spectroscopy

    Get PDF
    Soy protein-based polymers offer promising performance properties, but their characteristics are sensitively dependent on production conditions, so on-line monitoring could help provide the needed control during production. Mid-infrared spectroscopy combined with partial least squares offer the needed analysis, but the opacity of many materials in the mid-infrared limits its conventional application. Transient infrared spectroscopy is a method of acquiring mid-infrared spectra from moving streams in real time that avoids the opacity problem. We apply transient infrared spectroscopy to a polymer of soy protein and polyisoprene-graft-maleic anhydride– modified natural rubber during its compounding extrusion to measure tensile strength and Young’s modulus
    • …
    corecore