11 research outputs found
Estimation of biomass potential based on classification and height information
On the way to make energy supply independent from fossil resources more and more renewable energy sources have to be explored. Biomass has become an important energy resource during the last years and the consumption is rising steadily. Common sources of biomass are agricultural production and forestry but the production of these sources is stagnating due to limited space. To explore new sources of biomass like in the field of landscape conservation the location and available amount of biomass is unknown. Normally, there are no reliable data sources to give information about the objects of interest such as hedges, vegetation along streets, railways and rivers, field margins and ruderal sites. There is a great demand for an inventory of these biomass sources which could be answered by applying remote sensing technology. As biomass objects considered here are sometimes only a few meters wide, spectral unmixing is applied to separate different material mixtures reflected in one image pixel. The spectral images are assumed to have a spatial resolution of 5-20m with multispectral or hyperspectral band configurations. Combining the identified material part fractions with height information and GIS data afterwards will give estimates about the location of biomass objects. The method is applied to test data of a Sentinel-2 simulation and the results are evaluated visually.Federal Ministry of Economics and Technology (BMWi)DLR/50EE1212DLR/50EE1213DLR/50EE121
Mapping biomass availability to decrease the dependency on fossil fuels
To decrease the dependency on fossil fuels, more renewable energy sources need to be explored. Over the last years, the consumption of biomass has risen steadily and it has become a major source for re-growing energy. Besides the most common sources of biomass (forests, agriculture etc.) there are smaller supplies available in mostly unused areas like hedges, vegetation along streets, railways, rivers and field margins. However, these sources are not mapped and in order to obtain their potential for usage as a renewable energy, a method to quickly assess their spatial distribution and their volume is needed. We use a range of data sets including satellite imagery, GIS and elevation data to evaluate these parameters. With the upcoming Sentinel missions, our satellite data is chosen to match the spatial resolution of Sentinel-2 (10-20m) as well as its spectral characteristics. To obtain sub-pixel information from the satellite data, we use a spectral unmixing approach. Additional GIS data is provided by the German Digital Landscape Model (ATKIS Base-DLM). To estimate the height (and derive the volume) of the vegetation, we use LIDAR data to produce a digital surface model. These data sets allow us to map the extent of previously unused biomass sources. This map can then be used as a starting point for further analyses about the feasibility of the biomass extraction and their usage as a renewable energy source.BMWi/DLR/50EE1333BMWi/DLR/50EE1334BMWi/DLR/50EE133
Integration of spatial analyses into LCA - calculating GHG emissions with geoinformation systems
Purpose: Spatial analyses in life cycle assessments are hardly ever conducted. The combination of geoinformation systems and life cycle assessments (LCA) databases is a way to realise such complex calculations. By the example of energetic utilisation of biomass via conditioned biogas a geoinformation systems-based calculation tool is presented which combines geodata on biomass potentials, infrastructure, land use, cost and technology databases with analysis tools for the planning of biogas plants to identify the most efficient plant locations, to calculate balances of emissions, biomass streams and costs. Methods: The calculations include the impact categories greenhouse gases, acidification, and eutrophication and were tested for the Lower Rhine region and the Altmark region in Germany. The results of the greenhouse gas (GHG) balances are presented. By using only nationwide available datasets, the calculation tool can be used in other regions as well. Results and discussion: Balances of individual sites, regional balances and their temporal development can be calculated in geoinformation systems (GIS) using LCA methods. The composition of the substrates varies according to site and catchment area and lead to large variations in plant configurations and the resulting GHG balances and cost structures. Conclusions: GIS tools do not only allow the assessment of individual plants, but also the determination of the GHG reduction potential, the biogas potential as well as the necessary investment costs for entire regions. Thus, the exploitation of regional biogas potentials in a way that is sustainable and climate-friendly becomes simple
Biomasse-Energiekataster zur Standortentwicklung
Die Nutzung von Biomasse als erneuerbare Energiequelle eröffnet vor allem lokalen Energieproduzenten die Möglichkeit, aktiv die Versorgung in ihrer Region mitzugestalten. Im Rahmen des 3-jährigen von der Europäischen Union durch das Programm "Intelligente Enegie - Europa II (IEE)" geförderten Projekts "BEN (Biomass energy register for sustainable site development for European regions)" wird ein nutzerfreundliches, GIS-gestütztes Planungsinstrument entwickelt, welches die effiziente energetische Nutzung von Biomasse auf regionaler Ebene stärken und fördern soll
ESTIMATION OF BIOMASS POTENTIAL BASED ON CLASSIFICATION AND HEIGHT INFORMATION
On the way to make energy supply independent from fossil resources more and more renewable energy sources have to be explored.
Biomass has become an important energy resource during the last years and the consumption is rising steadily. Common sources of
biomass are agricultural production and forestry but the production of these sources is stagnating due to limited space. To explore
new sources of biomass like in the field of landscape conservation the location and available amount of biomass is unknown.
Normally, there are no reliable data sources to give information about the objects of interest such as hedges, vegetation along streets,
railways and rivers, field margins and ruderal sites. There is a great demand for an inventory of these biomass sources which could
be answered by applying remote sensing technology. As biomass objects considered here are sometimes only a few meters wide,
spectral unmixing is applied to separate different material mixtures reflected in one image pixel. The spectral images are assumed to
have a spatial resolution of 5–20 m with multispectral or hyperspectral band configurations. Combining the identified material part
fractions with height information and GIS data afterwards will give estimates about the location of biomass objects. The method is
applied to test data of a Sentinel-2 simulation and the results are evaluated visually
SNG und LPG aus biogenen Reststoffen - Technische Machbarkeit und Verwertungspotenzial
Dass sich biogene fett- und ölbasierte Reststoffe und Koppelprodukte durch katalytisches Cracken an Aktivkohlen und anderen porösen Katalysatoren bei Normaldruck in gasförmige Kohlenwasserstoffgemische umwandeln lassen, ist bekannt. In diesem Vorhaben werden jedoch erstmals systematische Untersuchungen dazu vorgelegt, diese Gasprodukte als Wertstoffe gezielt zu erzeugen. Erste experimentelle Ergebnisse zur Herstellung von Erdgassubstitut ("Substitute Natural Gas" - SNG) und Flüssiggas ("Liquified Petroleum Gas" - LPG) werden dabei durch eine Prozesssimulation ergänzt. Mit diesem Verfahren lassen sich nennenswerte Mengen gasförmiger n-Alkane gewinnen. Für die wichtigsten Gasbestandteile konnten Absatzpotenziale im Erdgas- und Flüssiggasmarkt, insbesondere als LPG-Beimischung zu Biomethan zur Herstellung von 100 % biobasiertem SNG für die Einspeisung ins Erdgasnetz, aufgezeigt werden. Weitere Absatzpotenziale liegen in der Verwendung im Kraftstoffbereich (Flüssiggasfahrzeuge). Dennoch wird eine wirtschaftliche Umsetzung des Verfahrenskonzeptes nur in der gleichzeitigen Wertschöpfung aus den Flüssigprodukten möglich sein. Die Verwendung zeolithischer Katalysatoren führt im Gasprodukt vornehmlich zu Ethen und Propen; bei den Flüssigprodukten sind hier teils Alkene, teils alkylierte Benzole vorherrschend. Rohstoffseitig konnten verschiedenste fettsäurehaltige Einsatzstoffe wie Fettsäurerückstände aus der chemisch-physikalischen Vorklärung eines Ölpflanzenverarbeiters, Havariefette aus der Ölpfl anzenverarbeitung, Altfett aus der Gastronomie und lebensmittelverarbeitenden Industrie oder Jatropha Curcas-Öl sowie Algenöl als Co-Feed erfolgreich eingesetzt werden. Dabei wurden an Aktivkohle bis zu 47 % energetischer Ausbeute für den organischen Anteil am Gasprodukt (OGP) erzielt. Geeignete Reaktortemperaturen für die gezielte Wertschöpfung aus der Flüssigphase lagen bei 475-500 °C. Untersuchungen zum Einfluss der Porenstruktur auf die katalytische Aktivität von Aktivkohle beim katalytischen Cracken weisen darauf hin, dass hier insbesondere die Mikroporen und kleinen Mesoporen (Poren mit 0,2-3,4 nm Radius) zum Beschleunigen der gewünschten Reaktionsverläufe notwendig sind. Gegenüber fossilen Produkten können bis zu 97 % an Treibhausgasemissionen bei der Erzeugung von 30 Gew.% Propan und 70 Gew.-% Diesel/Benzin eingespart werden