56 research outputs found

    The 2(2S+1)- Formalism and Its Connection with Other Descriptions

    Get PDF
    In the framework of the Joos-Weinberg 2(2S+1)- theory for massless particles, the dynamical invariants have been derived from the Lagrangian density which is considered to be a 4- vector. A la Majorana interpretation of the 6- component "spinors", the field operators of S=1 particles, as the left- and right-circularly polarized radiation, leads us to the conserved quantities which are analogous to those obtained by Lipkin and Sudbery. The scalar Lagrangian of the Joos-Weinberg theory is shown to be equivalent to the Lagrangian of a free massless field, introduced by Hayashi. As a consequence of a new "gauge" invariance this skew-symmetric field describes physical particles with the longitudinal components only. The interaction of the spinor field with the Weinberg's 2(2S+1)- component massless field is considered. New interpretation of the Weinberg field function is proposed. KEYWORDS: quantum electrodynamics, Lorentz group representation, high-spin particles, bivector, electromagnetic field potential. PACS: 03.50.De, 11.10.Ef, 11.10.Qr, 11.17+y, 11.30.CpComment: 13pp., merged hep-th/9305141 and hep-th/9306108 with revisions. Accepted in "Int. J. Geom. Meth. Phys.

    A General Geometric Fourier Transform

    Full text link
    The increasing demand for Fourier transforms on geometric algebras has resulted in a large variety. Here we introduce one single straight forward definition of a general geometric Fourier transform covering most versions in the literature. We show which constraints are additionally necessary to obtain certain features like linearity or a shift theorem. As a result, we provide guidelines for the target-oriented design of yet unconsidered transforms that fulfill requirements in a specific application context. Furthermore, the standard theorems do not need to be shown in a slightly different form every time a new geometric Fourier transform is developed since they are proved here once and for all.Comment: First presented in Proc. of The 9th Int. Conf. on Clifford Algebras and their Applications, (2011

    Spin Gauge Theory of Gravity in Clifford Space: A Realization of Kaluza-Klein Theory in 4-Dimensional Spacetime

    Full text link
    A theory in which 4-dimensional spacetime is generalized to a larger space, namely a 16-dimensional Clifford space (C-space) is investigated. Curved Clifford space can provide a realization of Kaluza-Klein theory. A covariant Dirac equation in curved C-space is explored. The generalized Dirac field is assumed to be a polyvector-valued object (a Clifford number) which can be written as a superposition of four independent spinors, each spanning a different left ideal of Clifford algebra. The general transformations of a polyvector can act from the left and/or from the right, and form a large gauge group which may contain the group U(1)xSU(2)xSU(3) of the standard model. The generalized spin connection in C-space has the properties of Yang-Mills gauge fields. It contains the ordinary spin connection related to gravity (with torsion), and extra parts describing additional interactions, including those described by the antisymmetric Kalb-Ramond fields.Comment: 57 pages; References added, section 2 rewritten and expande

    Formalization of Transform Methods using HOL Light

    Full text link
    Transform methods, like Laplace and Fourier, are frequently used for analyzing the dynamical behaviour of engineering and physical systems, based on their transfer function, and frequency response or the solutions of their corresponding differential equations. In this paper, we present an ongoing project, which focuses on the higher-order logic formalization of transform methods using HOL Light theorem prover. In particular, we present the motivation of the formalization, which is followed by the related work. Next, we present the task completed so far while highlighting some of the challenges faced during the formalization. Finally, we present a roadmap to achieve our objectives, the current status and the future goals for this project.Comment: 15 Pages, CICM 201

    The Schroedinger Problem, Levy Processes Noise in Relativistic Quantum Mechanics

    Full text link
    The main purpose of the paper is an essentially probabilistic analysis of relativistic quantum mechanics. It is based on the assumption that whenever probability distributions arise, there exists a stochastic process that is either responsible for temporal evolution of a given measure or preserves the measure in the stationary case. Our departure point is the so-called Schr\"{o}dinger problem of probabilistic evolution, which provides for a unique Markov stochastic interpolation between any given pair of boundary probability densities for a process covering a fixed, finite duration of time, provided we have decided a priori what kind of primordial dynamical semigroup transition mechanism is involved. In the nonrelativistic theory, including quantum mechanics, Feyman-Kac-like kernels are the building blocks for suitable transition probability densities of the process. In the standard "free" case (Feynman-Kac potential equal to zero) the familiar Wiener noise is recovered. In the framework of the Schr\"{o}dinger problem, the "free noise" can also be extended to any infinitely divisible probability law, as covered by the L\'{e}vy-Khintchine formula. Since the relativistic Hamiltonians |\nabla | and +m2m\sqrt {-\triangle +m^2}-m are known to generate such laws, we focus on them for the analysis of probabilistic phenomena, which are shown to be associated with the relativistic wave (D'Alembert) and matter-wave (Klein-Gordon) equations, respectively. We show that such stochastic processes exist and are spatial jump processes. In general, in the presence of external potentials, they do not share the Markov property, except for stationary situations. A concrete example of the pseudodifferential Cauchy-Schr\"{o}dinger evolution is analyzed in detail. The relativistic covariance of related waveComment: Latex fil

    Axiomatic geometric formulation of electromagnetism with only one axiom: the field equation for the bivector field F with an explanation of the Trouton-Noble experiment

    Full text link
    In this paper we present an axiomatic, geometric, formulation of electromagnetism with only one axiom: the field equation for the Faraday bivector field F. This formulation with F field is a self-contained, complete and consistent formulation that dispenses with either electric and magnetic fields or the electromagnetic potentials. All physical quantities are defined without reference frames, the absolute quantities, i.e., they are geometric four dimensional (4D) quantities or, when some basis is introduced, every quantity is represented as a 4D coordinate-based geometric quantity comprising both components and a basis. The new observer independent expressions for the stress-energy vector T(n)(1-vector), the energy density U (scalar), the Poynting vector S and the momentum density g (1-vectors), the angular momentum density M (bivector) and the Lorentz force K (1-vector) are directly derived from the field equation for F. The local conservation laws are also directly derived from that field equation. The 1-vector Lagrangian with the F field as a 4D absolute quantity is presented; the interaction term is written in terms of F and not, as usual, in terms of A. It is shown that this geometric formulation is in a full agreement with the Trouton-Noble experiment.Comment: 32 pages, LaTex, this changed version will be published in Found. Phys. Let

    From field theory to quantum groups

    No full text
    Professor Jerzy Lukierski, an outstanding specialist in the domain of quantum groups, will reach on May 21, 1995 the age of sixty. This is a birthday volume dedicated to him. It assumes the form of a collection of papers on a wide range of topics in modern research area from theoretical high energy physics to mathematical physics. Various topics of quantum groups will be treated with a special emphasis. Quantum groups is nowadays a very fashionable subject both in mathematics and high energy physics
    corecore